期刊文献+

一种根据ADMM改进的图像去噪方法 被引量:1

An improved image denoising method based on ADMM
下载PDF
导出
摘要 针对图像的传输中可能会产生噪声的影响和传输时间开销过大,导致图像的恢复效果较差的问题,基于数学中熵最大的原理,提出了一种基于熵函数的去噪重构算法。将该算法运用交替方向乘子法(alternating direction method of multipliers,ADMM)分而治之的思想提出了一种新的快速去噪算法。通过归一化均方误差(normalized mean square error,NMSE)和峰值信噪比(peak signal to noise ratio,PSNR)等评价标准进行实验仿真,验证所提算法的优越性。实验结果表明:根据上面思路提出的方法具有很好的效果,在去噪方面具有一定的用途。 In order to solve the problem that there may be effects of factors such as noise and excessive transmission time overhead in the transmission of the image,which will result in poor image restoration effect,a denoising and reconstruction algorithm is proposed based on entropy function,which is based on the principle of maximum entropy in mathematics.A new fast denoising algorithm is proposed by using the idea of divide and conquer of alternating direction method of multipliers.The experimental simulation complying with normalized mean square error and peak signal to noise ratio evaluation criteria verifies the superiority of the proposed algorithm.The experimental results show that the proposed method has a good effect and has a certain use in denoising.
作者 项建弘 魏俊豪 XIANG Jianhong;WEI Junhao(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)
出处 《应用科技》 CAS 2020年第4期14-19,25,共7页 Applied Science and Technology
基金 通信抗干扰技术国家重点实验室项目(614210202030217).
关键词 图像去噪 熵函数 ADMM 压缩感知 时间开销 NMSE PSNR MEA-RA-ADMM算法 image denoising entropy function ADMM compressed sensing time overhead NMSE PSNR MEA-RAADMM algorithm
  • 相关文献

参考文献5

二级参考文献166

  • 1宁媛,李皖.图像去噪的几种方法分析比较[J].贵州工业大学学报(自然科学版),2005,34(4):63-66. 被引量:37
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3黄震宇,沈祖和.解一类非线性极大极小问题的熵函数方法[J].科学通报,1996,41(17):1550-1554. 被引量:26
  • 4唐焕文,王雪华,张立卫.极大极小问题极大熵方法的收敛性[J].运筹学杂志,1996,15(1):57-59. 被引量:4
  • 5Donoho D L.Compressed sensing.IEEE Transactions on Information Theory,2006,52(4):1289-1306.
  • 6Baraniuk R,et al.A simple proof of the restricted isometry property for random matrices.Constructive Approximation,2008,28(3):253-263.
  • 7Candes E J.The restricted isometry property and its implications for compressed sensing.Comptes Rendus Mathematique,2008,346(9-10):589-592.
  • 8Candes E J et al.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory,2006,52(2):489-509.
  • 9Candes E J,Tao T.Near-optimal signal recovery from randora projections,Universal encoding strategies?IEEE Transactions on Information Theory,2006,52(12):5406-5425.
  • 10Romberg J.Imaging via compressive sampling.IEEE Signal Processing Magazine,2008,25(2):14-20.

共引文献490

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部