摘要
置换多项式在代数学、组合学、数论、编码理论、密码学等领域中均有广泛而又重要的应用.本文主要研究Fibonacci多项式.通过计算其函数值的等幂和,本文得到了判定这些定义在有限域上的Fibonacci多项式为置换多项式的必要条件,解决了Fernando和Rashid提出的一个公开问题,从而推广了有关Fibonacci多项式置换性的已有结论.
Permutation polynomial has wide and important applications in algebra,combinatorics,number theory,coding theory,cryptography,etc.In this paper,by calculating the sum of the Fibonacci polynomial,we obtain some necessary conditions that a Fibonacci polynomial,defined on a finite field,is a permutation polynomial,solve the open problem introduced by Fernando and Rashid and generalize the existing results.
作者
王智坚
WANG Zhi-Jian(School of Mathematics, Sichuan University, Chengdu 610064, China)
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第6期1047-1051,共5页
Journal of Sichuan University(Natural Science Edition)