期刊文献+

关于单位分数的Lazar问题

On a problem of Lazar on unit fractions
下载PDF
导出
摘要 设n为任意正整数.Erdös-Straus猜想是指当n≥2时,Diophantine方程4n=1x+1y+1z总有正整数解(x,y,z).设p≥5为任意素数.最近,Lazar证明Diophantine方程4p=1x+1y+1z在区域xy<z/2内没有x与y互素的正整数解(x,y,z).同时,Lazar提出问题:在上述方程中以5/p替换4/p,是否有类似结果?这也是Sierpinski提出的一个猜想.本文证明Diophantine方程ap=1x+1y+1z没有满足x,y互素且xy<z/2的正整数解(x,y,z),其中a为满足a<7≤p的正整数.这回答了上述Lazar问题,推广了Lazar的结果.证明方法和工具主要是利用有理数ap的连分数表示. Let n be a positive integer.The well-known Erdös-Straus conjecture asserts that the positive integral solution of the Diophantine equation 4n=1x+1y+1z always exists when n≥2.Recently,Lazar investigated some properties of the solutions to the above Diophantine equation in the special case that n is a prime number.Let p≥5 be a prime number.Lazar showed that there are no triple of positive integers(x,y,z)which is solution of the Diophantine equation 4p=1x+1y+1z in the range xy<z/2 and x,y=1.Meanwhile,Lazar pointed out that it would be interesting to find an analog of this result for 5/p instead of 4/p,which is also a conjecture due to Sierpinski.In this paper,we answer Lazar's question affirmatively and also extended Lazar's result by showing that the Diophantine equation ap=1x+1y+1z does not have any integer solution(x,y,z)such that x and y are coprime and xy<z/2,where a is a positive integer such that a<7≤p.Our proof mainly uses the continued fraction expansion of ap.
作者 卢健 李懋 邱敏 LU Jian;LI Mao;QIU Min(School of Mathematics, Sichuan University, Chengdu 610064, China;School of Mathematics and Statistics, Southwest University, Chongqing 400715, China;School of Science, Xihua University, Chengdu 610039, China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第6期1067-1072,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(11771304)。
关键词 DIOPHANTINE方程 连分数 渐近分数 Erdös-Straus猜想 Diophantine equation Continued fraction Convergent Erdös-Straus conjecture
  • 相关文献

参考文献1

二级参考文献7

  • 1Elsholtz C, Tao T. Counting the number of solutions to the ErdSs-Straus equation on unit fractions. ArXiv:1107. 1010v3[math.NT].
  • 2Hua L K. An Introduction to the Number Theory (in Chinese). Beijing: Science Press, 1995.
  • 3Jia C H. A note on Terence Tao's paper "On the number of solutions to 4/p=1/n1+1/n2+1/n3"ArXiv: 1107.5394v1[math.NT].
  • 4Jia C H. On the estimate for a mean value relative to 4/p=1/n1+1/n2+1/n3. ArXiv: 1107.6039v1[math.NT].
  • 5Shiu P. A Brun-Titchrnarsh Theorem for multiplicative functions. J Reine Angew Math, 1980, 313: 161-170.
  • 6Tao T. On the number of solutions to 4/p=1/n1+1/n2+1/n3. ArXiv: 1107.1010v2[math.NT].
  • 7Vaughan R C. On a problem of Erdos,Straus and -Schinzel. Mathematika, 1970, 17: 193-198.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部