期刊文献+

Ni掺杂磷化钴催化剂的制备及其苯并呋喃加氢脱氧的性能 被引量:1

Preparation of Ni doped cobalt phosphide catalyst and its performance in catalyzing hydrodeoxidation of benzofuranon
下载PDF
导出
摘要 以MCM-41为载体、硝酸镍为镍源、硝酸钴为钴源、磷酸氢二铵为磷源制备了Ni改性的磷化钴催化剂,并利用XRD、BET、SEM、CO吸附等分析手段对催化剂进行表征。以苯并呋喃(BF)为模型化合物,在连续流动固定床反应器中研究了不同镍磷比对催化剂加氢脱氧性能的影响。结果表明,引入Ni能显著加速加氢脱氧反应的进行,并且能提高主反应的选择性。在300℃、3.0 MPa、质量空速4.0 h^-1、H2/油体积比为500的条件下,CoP/MCM-41催化剂BF转化率为60%,无氧产率为19%;而Ni CoP/MCM-41催化剂BF转化率为98%,无氧产率为88%,催化剂BF转化率提高了28%,无氧产率提高了69%。 Nickel modified cobalt phosphide catalyst is prepared via impregnation method through using McM-41 as carrier,nickel nitrate as nickel source,cobalt nitrate as cobalt source and diammonium hydrogen phosphate as phosphorus source.The obtained catalyst samples are characterized by XRD,BET,SEM,FT-IR and CO-uptake.Taking benzofuran(BF)as model compound,the influences of Ni/P ratio on the hydrodeoxygenation performance of the catalyst are studied in a continuous flow fixed bed reactor.It is shown that the addition of Ni can accelerate hydrodeoxygenation reaction and enhance the selectivity of main reaction.Under the conditions that temperature is at 300℃,pressure is 3 MPa,H2/oil ratio is 500(v/v),and the weight hourly space velocity(WHSV)is 4 h^-1,the conversion rate of BF and the anaerobic yield over Co P/MCM-41 catalyst reach 60%and 19%respectively,while the conversion rate of BF and the anaerobic yield over Ni Co P/MCM-41 catalyst reach 98%and 88%respectively,representing increases of 28%and 69%,respectively.
作者 秦浩 朱天汉 戴和坤 宋华 QIN Hao;ZHU Tian-han;DAI He-kun;SONG Hua(School of Chemistry and Chemical Engineering,Northeast Petroleum University,Daqing 163318,China;Heilongjiang Provincial Key Chemical Industry Laboratory of Petroleum and Natural Gas,Northeast Petroleum University,Daqing 163318,China)
出处 《现代化工》 CAS CSCD 北大核心 2020年第11期194-199,共6页 Modern Chemical Industry
关键词 加氢脱氧 过渡金属磷化物 Ni掺杂 磷化钴 hydrodeoxygenation transition metal phosphide Ni doped cobalt phosphide
  • 相关文献

参考文献2

二级参考文献48

  • 1孙福侠,李灿.过渡金属磷化物的加氢精制催化性能研究进展[J].石油学报(石油加工),2005,21(6):1-11. 被引量:23
  • 2Zakzeski J, Bruijnincx P C,Jongerius A L,et al.The catalytic valorization of lignin for theproduction of renewable chemicals [ J ]. ChemicalReviews, 2010,110(6):3552-3599.
  • 3Huber G W,Iborra S,Corma A. Synthesis oftransportation fuels from biomass: chemistry,catalysts, and engineering [J]. Chemical Reviews,2006, 106(9):4044-4098.
  • 4Oasmaa A,Kuoppala E,Ardiyanti A, et al.Characterization of hydrotreated fast pyrolysisliquids [J]. Energy & Fuels, 2010, 24 (9): 5264-5272.
  • 5Elliott D C. Historical developments inhydroprocessing bio*oils [J]. Energy & Fuels,2007, 21(3):1792-1815.
  • 6Furimsky E. Catalytic hydrodeoxygenation [J].Applied Catalysis A-General,2000,199(2): 147-190.
  • 7Wildschut J, Mahfud F H, Venderbosch R H. Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts [J]. Industrial & Engineering Chemistry Research, 2009, 48 (23) : 10324-10334.
  • 8Choudhary T V,Phillips C B. Renewable fuels viacatalytic hydrodeoxygenation [J]. Applied CatalysisA-General, 2011,397(1-2):1-12.
  • 9Dickerson T,Soria J. Catalytic fast pyrolysis: areview [J]. Energies, 2013? 6(1) : 514-538.
  • 10Vispute T P, Huber G W. Production of hydrogen,alkancs and polyols by aqueous phase processing ofwood-derived pyrolysis oils [J]. Green Chemistry,2009, 11(9):1433-1445.

共引文献7

同被引文献7

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部