期刊文献+

基于数据分析和改进Chebyshev神经网络的风速时间序列预测 被引量:3

Time series prediction of wind speed based on data analysis and improved Chebyshev neural network
下载PDF
导出
摘要 为提高风速时间序列预测精度,基于风速时间序列的随机性和波动性,提出互补集合经验模态分解(Complete Ensemble Empirical Mode Decomposition,CEEMD)和正交粒子群算法(Orthogonal Particle Swarm Optimization,OPSO)优化Chebyshev基函数神经网络的混合风速时间序列预测模型(CEEMD-OPSO-Chebyshev)。利用CEEMD将原始风速时间序列分解成有限个固有模态分量,避免了传统的分解信号重建中冗余噪声残留问题。同时引入排列熵分析各分量内在特性进行聚类,提出基于OPSO优化算法的Chebyshev神经网络风速预测模型,利用OPSO优化预测网络权值,进一步提高预测精度,通过对实际采样的风电场风速时间序列进行预测分析,结果可得所提出的混合预测模型与传统预测模型相比能得到更高的预测精度。 In order to improve the prediction accuracy of wind speed time series,based on the randomness and fluctuation of wind speed time series,a hybrid wind speed time series prediction model(CEEMD-OPSO-Chebyshev)based on Chebyshev basis function neural network is proposed by using complementary set empirical mode decomposition and orthogonal particle swarm optimization.The original wind speed time series is decomposed into finite intrinsic modal components by CEEMD,which avoids the residual problem of redundant noise in traditional decomposition signal reconstruction.Meanwhile,the permutation entropy is introduced to analyze the intrinsic characteristics of each component for clustering,and a Chebyshev neural network wind speed prediction model based on orthogonal particle swarm optimization algorithm is proposed,which adopts orthogonal particle swarm optimization to predict the weight of the network to further improve the prediction accuracy.The results show that the proposed hybrid forecasting model can obtain higher forecasting accuracy than the traditional forecasting model through forecasting and analyzing the actual wind speed time series of wind farms.
作者 张旭 张宏立 范文慧 王聪 Zhang Xu;Zhang Hongli;Fan Wenhui;Wang Cong(School of Electrical Engineering,Xinjiang University,Urumqi 830046,China;Department of Automation,Tsinghua University,Beijing 100084,China)
出处 《电测与仪表》 北大核心 2020年第22期33-39,共7页 Electrical Measurement & Instrumentation
基金 国家自然科学基金资助项目(51767022,51575469) 新疆维吾尔自治区自然科学基金资助项目(2019D0C082)。
关键词 风速时间序列 互补经验模态分解 正交粒子群算法 CHEBYSHEV神经网络 wind speed time series complementary empirical mode decomposition orthogonal particle swarm optimization Chebyshev neural network
  • 相关文献

参考文献4

二级参考文献49

  • 1张德二,薛朝辉.公元1500年以来EINino事件与中国降水分布型的关系[J].应用气象学报,1994,5(2):168-175. 被引量:40
  • 2李向阳,程春田,林剑艺.基于BP神经网络的贝叶斯概率水文预报模型[J].水利学报,2006,37(3):354-359. 被引量:41
  • 3瞿伟廉,程磊.应用径向基函数神经网络处理EMD方法中的边界问题[J].华中科技大学学报(城市科学版),2006,23(4):1-4. 被引量:23
  • 4Hsu K, Gao X G, Sorooshian S, et al. Precipitation estimation from remotely sensed information using artificial neural networks[J]. J Appl Meteorol, 1997, 36: 1176-1190.
  • 5Hull J R, Pendse H P, Musavi M T. A neural network algorithm using wavelet and auto regressive inputs for system identification[J]. IEEE International Conference on Networks, 1997, 294: 724-727.
  • 6Tewfiki A H. On the optimal choice of a wavelet for signal representation[J]. IEEE Trans Information Theory, 1992, 38(2): 747-765.
  • 7Norden E H, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454: 899-955.
  • 8Huang N E. A new view of nonlinear water waves-the Hilbert spectrum[J]. Ann Rev Fluid Mech, 1999, 31(1): 417-457.
  • 9Hecht-Nielsen R. Theory of the back propagation neural network[C]//Proc of UCNN, 1989, 1: 593-603.
  • 10熊浩,陈伟根,杜林,孙才新,廖瑞金.基于T-S模型的电力变压器顶层油温预测研究[J].中国电机工程学报,2007,27(30):15-19. 被引量:42

共引文献96

同被引文献39

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部