期刊文献+

学习分析视域下学习预测研究的发展图景 被引量:10

The Development Prospect of Learning Prediction Research from the Perspective of Learning Analytics
下载PDF
导出
摘要 学习预测是教育领域的新兴主题,致力于为学习者提供有效的个性化学习服务、提升在线学习效果。为厘清国内学习预测研究的发展图景,文章首先以2016~2019年教育技术领域的8种中文核心期刊为文献来源,选取25篇论文作为研究样本,编制了学习预测研究编码表。接着,文章从预测对象、学习情境、学习者和预测模型四个维度对样本论文进行了量化分析。随后,文章阐释了学习预测研究具有的风险识别、数据理解和过程诊断三重效用。最后,文章从预测对象、预测模型、预测指标、预测旨趣四个维度,指出了学习预测研究的未来发展方向,旨在解决学习预测面临的现实难题,进一步推动其在学习分析领域的发展与应用。 Learning prediction is an emerging topic in the field of education,which is committed to providing effective personalized learning services for learners and improving online learning effect.In order to clarify the development prospect of learning prediction research in China,this paper firstly took 8 kinds of Chinese core journals in the field of educational technology from 2016 to 2019 as document sources,selected 25 papers as research samples,and formulated the coding table of learning prediction research.Secondly,these sample papers were analyzed quantitatively from four dimensions of prediction object,learning context,learner and prediction model.Subsequently,it was explained that the learning prediction research had three kinds of effects as risk identification,data understanding and process diagnosis.Finally,the future development direction of learning prediction research was pointed out from four dimensions of prediction object,prediction model,prediction indicator and prediction intention,in order to solve the practical problems faced by learning prediction and promote the development and application of learning prediction in learning analytics field.
作者 田浩 武法提 TIAN Hao;WU Fa-ti(Faculty of Education,Beijing Normal University,Beijing,China 100875;Engineering Research Center of Digital Learning and Educational Public Service,Ministry of Education,Beijing Normal University,Beijing,China 100875)
出处 《现代教育技术》 CSSCI 北大核心 2020年第11期98-104,共7页 Modern Educational Technology
基金 国家社会科学基金教育学一般课题“基于人机智能协同的精准学习干预研究”(项目编号:BCA200080)资助。
关键词 学习分析 学习预测 预测对象 学习情境 学习者 预测模型 learning analytics learning prediction prediction object learning context learner prediction model
  • 相关文献

参考文献14

二级参考文献124

  • 1Alavi, M. (1994). Computer-mediated collaborative learning: an empiri- cal evaluation. Management Information Systems Quarterly, 18(2):159-174.
  • 2Astin, A. W. (1996). Involvement in learning revisited: lessons we have learned. Journal of College Student Development, 37(2): 123-134.
  • 3Ayan, M. N. R., & Gareia, M. T. C. (2008). Prediction of university stu- dents' aeademie achievement by linear and logistic models. The Span- ish journal of psyehoh)gy, 11(1): 275-288.
  • 4Bento, R., & Schuster, C. (2003). Participation: The online challenge. In A. Aggaal (Eds.), Web-based education: Learning from experience (pp. 156-164). Hershey, Pennsylvania: Idea Group Publishing.
  • 5Doehy, F. J. R. C. (1994). Investigating the use of knowledge profiles in a flexible learning environment: analyzing students' prior knowledge states. In S. Vosniadnu (Eds.), Psychological and Educational Founda- tions of Technology-Based Learning Environments (pp. 339-353). Berlin, New York: Springer Verlag.
  • 6Flook, L., Repetti, R. L., & Ulhnan, J. B. (2005). Classroom social expe- riences as predictors of academic performance. Developmental psy- chology, 41(2): 319.
  • 7Harackiewicz, J. M., Durik, A. M., Barron, K. E., Linnenbrink-Gareia, L., & Tauer, J. M. (2008). The role of achievement goals in the devel- opment of interest: Reciprocal relations between achievement goals, interest, and performance. Journal of educational psychology, 100(1): 105.
  • 8Hosehl, C., & Knzeny, J. (1997). Predicting academic performance of medical students: The first three years. American Journal of Psychia- try, 154(6): 87.
  • 9Huang, S., & Fang, N. (2011). Work in progress--Prediction of stu- dents' academic performance in an introductory engineering course. In Frontiers in Education Conference (FIE), 2011 (pp. S4D-1). IEEE.
  • 10Huang, S., & Fang, N. (2013). Predicting student academic performance in an engineering dynamics course: A comparison of four types of pre- dictive mathematical models. Computers & Education, (61): 133-145.

共引文献394

同被引文献155

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部