摘要
在1-Bit压缩感知(compressive sensing,CS)框架下,将信号的稀疏结构先验引入广义稀疏Bayesian学习(generalized sparse Bayesian learning,Gr-SBL),研究基于Gr-SBL的1-Bit CS重构。将广义线性模型与模式耦合稀疏Bayesian学习相结合,提出了一种基于广义模式耦合稀疏Bayesian学习1-Bit CS重构算法,简称为1-Bit Gr-PC-SBL算法。该算法将1-Bit CS重构问题迭代地分解成一系列标准CS重构问题,在信号稀疏模式未知的情况下,基于模式耦合稀疏Bayesian学习实现信号重构。进而,引入阈值自适应的二进制量化,设计了自适应阈值的1-Bit Gr-PC-SBL算法,进一步提升了算法的信号重构性能。
Under the framework of 1-Bit compressive sensing(CS),the signal’s sparsity structure prior is introduced into generalized sparse Bayesian learning(Gr-SBL),and the reconstruction of 1-Bit CS based on Gr-SBL is studed.The generalized linear models are combined with the pattern-coupled sparse Bayesian learning,and the 1-Bit CS reconstruction algorithm based on generalized pattern-coupled sparse Bayesian learning is proposed,which is shortened to 1-Bit Gr-PC-SBL algorithm.This algorithm iteratively reduces the 1-Bit CS reconstruction problem to a sequence of standard CS reconstruction problems,and realizes signal reconstruction based on pattern-coupled sparse Bayesian learning,while the signal’s sparse patterns are entirely unknown.Furthermore,binary quantization with adaptive thresholds is introduced,and a 1-Bit Gr-PC-SBL algorithm with adaptive thresholds is proposed,which can further improve the reconstruction performance of the algorithm.
作者
司菁菁
韩亚男
张磊
程银波
SI Jingjing;HAN Yanan;ZHANG Lei;CHENG Yinbo(School of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China;Hebei Key Laboratory of Information Transmission and Signal Processing,Qinhuangdao 066004,China;Ocean College,Hebei Agricultural University,Qinhuangdao 066003,China)
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2020年第12期2700-2707,共8页
Systems Engineering and Electronics
基金
国家自然科学基金(61701429)
河北省自然科学基金(F2018203137)资助课题。