摘要
提出一种基于试验统计能量分析(ESEA)的高速列车车内噪声预测方法。首先,根据统计能量分析(SEA)的基本原理,考虑高速列车的车体结构特征,划分车厢子系统并建立车内噪声预测模型。然后,通过试验方法研究并获得高速列车车内噪声预测模型的关键SEA参数:结构子系统和声腔子系统的模态密度、阻尼损耗因子;结构子系统与结构子系统、结构子系统与声腔子系统、声腔子系统与声腔子系统之间的耦合损耗因子;各个子系统的功率输入。最终,通过将高速列车车内噪声预测结果和线路试验结果进行对比分析,验证建模方法和预测模型的可靠性、准确性。研究结果可为轨道车辆以及其他相关交通装备噪声问题的建模预测提供借鉴和参考。
This paper presented an approach for the interior noise prediction of high-speed trains based on Experimental Statistical Energy Analysis(ESEA).Firstly,according to the principle of Statistical Energy Analysis(SEA)and the structural characteristics of a high-speed train,upon the division of the compartment subsystem,the interior noise prediction model was established.Then,the key parameters of SEA for the simulation model were obtained through various experiments including:The modal density of a structural subsystem or an acoustical cavity subsystem;the damping loss factor of a structural subsystem or an acoustical cavity subsystem;the coupling loss factors between two structural subsystems,a structural subsystem and an acoustical cavity subsystem,and two acoustical cavity subsystems;and the power inputs of each subsystem.Finally,by comparing the prediction results of the interior noise with the field measurements,the reliability and accuracy of the modeling method and the simulation model were verified.This paper can provide a basis for the noise modeling and prediction of rail vehicles and other related transportation equipment.
作者
张捷
姚丹
王瑞乾
肖新标
ZHANG Jie;YAO Dan;WANG Ruiqian;XIAO Xinbiao(State Key Laboratory of Polymer Materials Engineering /Polymer Research Institute, Sichuan University, Chengdu 610065, China;State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China;School of Urban Rail Transit, Changzhou University, Changzhou 213164, China)
出处
《铁道学报》
EI
CAS
CSCD
北大核心
2020年第11期45-52,共8页
Journal of the China Railway Society
基金
国家自然科学基金(U1834201,U1934203,52002257)
国家重点研发计划项目(2016YFE0205200)
高分子材料工程国家实验室自主课题(sklpme2020-3-12)。
关键词
高速列车
车内噪声
统计能量分析
模态密度
阻尼损耗因子
耦合损耗因子
high-speed train
interior noise
statistical energy analysis
modal density
damping loss factor
coupling loss factor