摘要
个性化的运动处方将更具针对性,可以更加高效、科学地提高大学生身体素质。个性化运动处方需要对个体体质进行合理的分类,如何在海量的学生体质健康数据中进行快速、合理的分类,是制定合理的个性化运动处方的重要前提。提出一种基于K-medoids算法的大学生体质健康的分类方法,并对该方法进行验证。实验结果表明,该方法能够快速、合理地对大学生体质进行分类,对评估大学生体质健康和为每位大学生开具针对性强的个性化运动处方均具有重要意义。
Personalized exercise prescription will be more targeted,can be more efficient and scientific to improve the physical quality of college students.Personalized exercise prescription needs reasonable classification of individual constitution.How to quickly and reasonably classify students'physical health data is an important prerequisite for formulating a reasonable personalized exercise prescription.Proposes a classification method of College Students'physical health based on k-medoids algorithm,and verifies the method.The experimental results show that this method can quickly and reasonably classify college students'physique,which is of great significance to evaluate college students'physical health and to issue personalized exercise prescription for each college student.
作者
胡世平
李博
贾年
HU Shi-ping;LI Bo;JIA Nian(School of Computer and Software Engineering,Xihua University,Chengdu 610039)
出处
《现代计算机》
2020年第30期12-15,共4页
Modern Computer
基金
四川省科技厅重点项目:基于儿童青少年健康促进的智能运动干预系统应用基础研究(重点)(No.2018JY0047)
四川省科技厅面上项目:无线电智能监测系统面向服务的应用基础研究(面上)(No.2017JY0203)
西华大学学科平台开放课题:针对儿童青少年健康促进的智能运动干预系统的关键技术研究(No.jkgl2018-032)。