摘要
盆式绝缘子的性能直接关系到气体绝缘组合电器(gas insulated switchgear,GIS)设备的整体绝缘水平,如何有效评估盆式绝缘子的老化情况与剩余寿命是当今的热点问题。通过实验求取材料动力学参数可为盆式绝缘子的寿命评估提供新的技术思路。为此在研究Agrawal等传统热动力学分析方法的基础上,提出一种更加有效的高精度计算方法,并具体应用于盆式绝缘子材料热动力学参数的求取中。研究结果表明,该方法可同时求得绝缘材料的热动力学三因子,且求取反应机理函数的可靠性更高。对盆式绝缘子材料热分解过程的微观机制给出了解释,其热解可分为3个温度阶段,3阶段的表观活化能E与表观指前因子A数值呈递增状态,且反应机理不同。上述研究结果使得热动力学参数的计算过程简便可靠,为评估固体绝缘老化状态与剩余寿命提供了技术方法。
The performance of a basin-type insulator is directly related to the overall insulation capability of gas insulated switchgear(GIS),and how to effectively assess the aging condition and residual life expectancy of the insulator still remains one of the research hotspots.Computational estimation of the thermal kinetic parameters of the basin-type insulator is taken as a feasible technological scheme.Based on comprehensive analysis on the traditional thermal decomposition methods such as Agrawal,a more reliable and accurate method is proposed in this paper,which is specifically applied to calculate the thermal kinetic parameters of the basin-type insulator.The research results show that the three thermal kinetic factors of the insulation material can be obtained simultaneously,with a higher reliability in figuring out the reaction mechanism function.The micro-mechanism of the thermal decomposition process of the basin-type insulator is explained,and the pyrolysis can be divided into three temperature stages.The apparent activation energy E and the apparent pre-exponential factor A at the three temperature stages are in an increasing state,and the reaction mechanism of the three stages is different.The proposed research facilitates an easy and reliable calculation of the thermal kinetic parameters,which presents effective technological methods for further evaluating the aging status and residual life expectancy of the basin insulators.
作者
彭鹏
任鹏
李庆民
张蔚
丛浩熹
金虎
PENG Peng;REN Peng;LI Qingmin;ZHANG Wei;CONG Haoxi;JIN Hu(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University,Beijing 102206,China;Electric Power Research Institute of China Southern Power Grid,Guangzhou 510080,China)
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2020年第10期3622-3629,共8页
High Voltage Engineering
基金
国家自然科学基金(51737005)
中央高校基本科研业务费专项资金(2019QN114)
中国南方电网公司科技项目(SEPRI-K175010)。