期刊文献+

基于U-Net网络和椭圆度量学习的防震锤锈蚀识别 被引量:3

Identification of Anti-vibration Hammer Corrosion of High-voltage Transmission Lines Based on U-Net Network and Elliptic Metric Learning
下载PDF
导出
摘要 高压输电线路中金属锈蚀会严重危害输电线路的安全运行。针对高压输电线背景复杂、缺乏有效锈蚀检测手段以及锈蚀检测准确率低等问题,提出了一种基于U-Net网络和度量学习的高压输电线防震锤锈蚀检测方法。相比其他深度网络,U-Net网络的参数量较少且直观,在小样本下具有较优的性能,利用U-Net网络可以将复杂背景条件下的高压输电线路中的防震锤完整分割出来。对分割后的防震锤图像提取HSV颜色特征和LBP纹理特征,并引入能够反映样本空间结构信息或语义信息的椭圆度量,通过椭圆度量学习实现高压输电线防震锤锈蚀的识别。实验结果表明,相比于支持向量机、BP神经网络、决策树等检测方法,该方法能够高效、准确地识别复杂背景环境下的高压输电线防震锤锈蚀。 Metal corrosion in high-voltage transmission lines can seriously endanger the safe operation of transmission lines.Aiming at the problems of complex background of high-voltage transmission lines,lack of effective corrosion detection methods,and low accuracy of corrosion detection,we propose a method for detecting corrosion of anti-vibration hammers of high-voltage transmission lines based on U-Net network and metric learning.Compared with other deep networks,the U-Net network has fewer parameters and is intuitive with better performance in a small sample.U-Net networks can be used to completely isolate the seismic hammers in high-voltage transmission lines under complex background conditions.The HSV color features and LBP texture features are extracted from the segmented seismic image,and an ellipse metric that reflects the spatial structure information or semantic information of the sample is introduced.The ellipse metric learning is used to identify the anticorrosive hammer corrosion of high-voltage power lines.Experiment shows that compared with support vector machine,BP neural network,decision tree and other detection methods,the proposed method can efficiently and accurately identify the anti-vibration hammer corrosion of high-voltage transmission lines in complex background environments.
作者 刘军 孙庆 刘玮 康伟东 秦浩 郭成英 LIU Jun;SUN Qing;LIU Wei;KANG Wei-dong;QIN Hao;GUO Cheng-ying(State Grid Anhui Electric Power Co.,Ltd.,Hefei 230601,China;Anhui University,Hefei 230601,China;Anhui Nanrui Jiyuan Electricity Grid Technical Co.,Ltd.,Hefei 230088,China)
出处 《计算机技术与发展》 2020年第11期163-167,共5页 Computer Technology and Development
基金 国家自然科学青年基金(61401001)。
关键词 锈蚀检测 高压输电线防震锤 U-Net网络 HSV颜色特征 LBP纹理特征 度量学习 corrosion detection high-voltage transmission line anti-vibration hammer U-Net network HSV color features LBP texture features metric learning
  • 相关文献

参考文献14

二级参考文献137

共引文献231

同被引文献26

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部