期刊文献+

电极电势调控对氨氧化脱氮与生物膜电活性的影响 被引量:5

Effects of electrode potential regulation on ammonium oxidation denitrification and electroactivity of biofilms
原文传递
导出
摘要 为解决低C/N值含氮废水在处理过程中碱度和碳源不足的问题,通过电极电势调控的方式干预氨氧化脱氮及生物膜电化学活性.在处理碱度不足(1.0 g/L NaHCO3)的低C/N含氮废水时,外加正电势+0.3、+0.4、+0.6 V(vs Ag/AgCl),系统氨氧化率分别为54.59%、59.31%、37.97%,相较于不加电势体系(70.79%),最大降低了46.24%;外加负电势-0.6、-0.8、-1.0 V(vs Ag/AgCl)时,氨氧化率分别为93.41%、79.27%、83.23%,相较于不加电势时最大提高了31.95%;但总氮去除率在正负电势条件下均有提高,与对照组(9.38%)相比,最高总氮去除率为23.47%,达对照组的2.5倍.CV扫描结果显示,外加电势后工作电极生物膜在-0.25V至-0.35V范围出现还原峰,对照组无明显峰出现,且电流相较对照组更大,对比说明外加电势能够调控生物膜的电化学活性.16S rRNA分析发现,对比未加电势,外加电极电势后电极生物膜中的放线菌门相对丰度减少,变形菌门和绿弯菌门相对丰度增加,Nitrosomonas sp.、Nitrosospira sp.、Bradyrhizobiaceae sp.及Rhodanobacter sp.等具有氨氧化和反硝化作用的菌属被同步富集.本研究基于脱氮菌组成及其电化学活性,推测存在硝化/反硝化氮素转化的直接种间电子传递(DIET)途径,促进了低C/N值废水脱氮.(图6参31) To solve the problem of insufficient alkalinity and carbon source in the treatment of nitrogenous wastewater with a low C/N ratio, the electrode potential is set to regulate ammonia oxidation and the electrochemical activity of biofilm for nitrogen removal. With a positive potential of +0.3 V, +0.4 V, and +0.6 V(vs. Ag/AgCl) applied to the working electrode with 1.0 g/L NaHCO3, the removal efficiencies of ammonia decrease to 54.59%, 59.31%, and 37.97%, respectively, with the maximum decrease to 46.24% of the control group without applying a potential(70.79%). While, with the negative potentials of-0.6 V,-0.8 V, and-1.0 V(vs. Ag/AgCl), the removal efficiencies of ammonia increase to 93.41%, 79.27%, and 83.23%, respectively, with the maximum increase to 31.95% compared with the control group without applying a potential. However, the removal efficiency of total nitrogen is improved under both positive and negative potential conditions. The total nitrogen removal efficiency in the control experiment was only 9.38%, while the highest removal efficiencies of the negative potential group rose to 23.47%, which was 2.5 times as much as the control. Moreover, the cyclic voltammetry analysis results showed that the working electrode biofilm had a reduction peak in the range of-0.25 V to-0.35 V after applied potential. However, there was no obvious peak in the control experiment, and the current was larger than in the control group, indicating that applying potential could regulate the electrochemical activity of the biofilm. According to 16S rRNA analysis, the relative abundance of the Actinomycete phylum decreased in the group with applied potential compared with the control group. However, the phyla of Proteobacteria and Chloroforms increased, and the dominant bacteria such as Nitrosomonas sp., Nitrosospira sp., Bradyrhizobiaceae sp., and Rhodanobacter sp. with ammonia oxidation and denitrification activities were simultaneously enriched. Based on the microbial community and electrochemical activity of denitrification bacteria, it is speculated that there is a direct interspecific electron transfer(DIET) pathway for nitrogen conversion in the nitrification/denitrification process, which improves nitrogen removal in ammoniacontaining wastewater with a low C/N ratio.
作者 康岱 崔梦瑶 杨暖 丁祥 李大平 张礼霞 占国强 KANG Dai;CUI Mengyao;YANG Nuan;DING Xiang;LI Daping;ZHANG Lixia;ZHAN Guoqiang(China West Normal University,Nanchong 637009,China;Chengdu Institute of Biology,Chinese Academy of Sciences,Chengdu 610041,China)
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2020年第5期1268-1274,共7页 Chinese Journal of Applied and Environmental Biology
基金 中国科学院西部之光项目(2017XBZG_XBQNXZ_A1007) 中国科学院青年创新促进会项目(2018404) 四川省重点研发项目(2018SZ0324,2018SZ0372)资助。
关键词 微生物电化学系统 低C/N比含氮废水 脱氮 产碱 微生物群落 microbial electrochemical system nitrogenous wastewater with low C/N ratio denitrification alkalinity production microbial community
  • 相关文献

参考文献1

二级参考文献30

  • 1He Z, Kan J, Wang Y, Huang Y, Mansfeld F, Nealson KH. Electricity production coupled to ammonium in a microbial fuel cell [J]. Environ Sci Technol, 2009, 43 (9): 3391-3397.
  • 2Van de Graaf AA,Mulder A, de Bruijn P, Jetten MS, Robertson LA, Kuenen JG. Anaerobic oxidation of ammonium is a biologically mediated proeess [J]. Appl Environ Microbiol, 1995, 61 (4): 1246-1251.
  • 3Garrido JM, van Benthum WAJ, van Loosdrecht MCM, Heijnen JJ. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor [J]. Biotechnol Bioeng, 1997, 53 (2): 168-178.
  • 4Yooa H, Ahna KH, Leea H J, Leeb KH, Kwakb YJ, Songa KG.Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrifyication (SND) via nitrite in an intermittently-aerated reactor [J]. Water Res, 1999, 33 (1): 145-154.
  • 5Rabaey K, Rodrlguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH. Microbial ecology meets electrochemistry: electricity-driven and driving communities [J]. 1SME J, 2007, 1 (1): 9-18.
  • 6Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J]. Environ Sci Technol, 2004, 38 (7): 2281-2285.
  • 7Gregory KB, Lov|ey DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes [J]. Environ Sci Technol, 2005, 39 (22): 8943-8947.
  • 8Tandukar M, Huber S J, Onodera T, Pavlostathis SG. Biological chromium(Vl) reduction in the cathode of a microbial fuel cell [J]. Environ Sci Technol, 2009, 43.(21): 8159-8165.
  • 9Li Y, Lu AH, Ding HR, Jin S, Yah YH, Wang CQ, Zen CP, Wang H. Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells [J]. Electrochem Commun, 2009, 11 (7): 1496-1499.
  • 10Huang LP, Chai XL, Chen GH, Logan BE. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells [J]. Environ Sci Technol, 2011, 45 (11): 5025-5031.

共引文献5

同被引文献24

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部