摘要
为了满足集成微波器件进行高分辨率微波近场测量的需求,本论文提出了一种基于金刚石氮空位(Nitrogen-Vacancy,NV)色心的微波近场成像技术.该技术可用于查找芯片等集成微波器件的干扰源和信号串扰.此微波近场成像方法采用金刚石NV色心颗粒作为场传感器,其中金刚石颗粒固定在锥形光纤的末端.由于塞曼效应,NV色心的光探测磁共振(Optical Detection Magnetic Resonance,ODMR)谱在外部静磁场环境中会分裂成为8个峰,通过测量共振峰频点的Rabi振荡谱,能够得到Rabi频率,接着通过2.8MHz/Gauss换算得出该处的微波场强度,最后通过将所测得所有数据点进行二维图像处理即可得到所测芯片和集成微波器件的表面微波场近场图像.
In order to meet the needs of integrated microwave devices for high-resolution microwave near-field measurement,this paper proposes a microwave near-field imaging technology based on the diamond Nitrogen-Vacancy(NV)color center.This technology can be used to find interference sources and signal crosstalk of integrated microwave devices such as chips.This microwave near-field imaging method uses diamond NV color center particles as a field sensor,where the diamond particles are fixed at the end of a tapered fiber.Due to the Zeeman effect,the optical detection magnetic resonance(ODMR)spectrum of the NV color center will split into 8 peaks in the external static magnetic field environment.By measuring the Rabi oscillation spectrum of the resonance peak frequency point,the Rabi frequency can be obtained,and then use 2.8MHz/Gauss to calculate the microwave field strength.Finally,the near-field image of the surface microwave field of the chip and the integrated microwave device can be obtained by performing two-dimensional image processing on all measured data points.
作者
郭志刚
陈国彬
顾邦兴
和文豪
姜海峰
王昊
杜关祥
GUO Zhi-gang;CHEN Guo-bin;GU Bang-xing;HE Wen-hao;JIANG Hai-feng;WANG Hao;DU Guan-xiang(College of Telecommunications and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing,Jiangsu 210003,China;Electromechanic Engineering College,Suqian College,Suqian,Jiangsu 223800,China)
出处
《电子学报》
EI
CAS
CSCD
北大核心
2020年第11期2258-2262,共5页
Acta Electronica Sinica
基金
国家重点研发计划(No.2017YFB0403602)
江苏省特聘教授项目(No.RK002STP15001)
南京邮电大学校长特聘教授项目(No.NY214136)
宿迁市产业发展引导资金项目(No.K201912)
江苏省自然科学基金(No.SBK2020041231)。
关键词
微波场成像
金刚石NV色心
芯片
高分辨率
microwave field imaging
nitrogen-vacancy center ensembles in diamond
chip
high resolution