期刊文献+

基于多尺度特征提取与挤压激励模型的运动想象分类方法 被引量:6

Motor Imagery Classification Based on Multiscale Feature Extraction and Squeeze-Excitation Model
下载PDF
导出
摘要 基于运动想象的脑机接口技术能够建立大脑与外界之间的联系,逐渐成为人机混合增强智能的重要应用,并广泛应用于医学康复治疗等领域.由于脑电信号具有非线性、非平稳和低信噪比等特点,使得准确的分类运动想象脑电信号具有很大挑战.为此,提出一种新颖的多尺度特征提取与挤压激励模型对运动想象脑电信号进行高精度分类.首先,基于多尺度卷积模块自动提取原始脑电信号的时域、频域和时频域特征;然后,使用残差模块和挤压激励模块分别进行特征的融合和选择;最后,利用全连接网络层进行运动想象脑电信号的分类.实验在2个公开的脑机接口竞赛数据集上进行分析,结果表明该模型与现有先进模型相比,有效地提升了运动想象脑电信号的识别效果,在2个数据集上分别取得了78.0%和82.5%的平均准确度,该模型可以在脑电通道较少的情况下有效地分类脑电信号且无需手动设计特征,具有较高的应用价值. Brain-computer Interface(BCI)technology based on motor imagery(MI)can establish communication between the human brain and outside world.It has been widely used in medical rehabilitation and other fields.Owing to the characteristics of the motor imagery EEG signals,such as non-linear,non-stationary,and low signal-noise ratio,it is a huge challenge to classify motor imagery EEG signals accurately.Hence,we propose a novel multiscale feature extraction and squeeze-excitation model which is applied for the classification of motor imagery EEG signals.Firstly,the proposed deep learning module,which is based on multiscale structure,automatically extracts time domain features,frequency domain features and time-frequency domain features.Then,the residual module and squeeze-excitation module are applied for feature fusion and selection,respectively.Finally,fully connected network layers are used to classify motor imagery EEG signals.The proposed model is evaluated on two public BCI competition datasets.The results show that the proposed model can effectively improve the recognition performance of motor imagery EEG signals compared with the existing several state-of-the-art models.The average accuracy on the two datasets is 78.0%and 82.5%,respectively.Moreover,the proposed model has higher application value because it classifies motor imagery EEG signals efficiently without manual feature extraction when spatial information is insufficient.
作者 贾子钰 林友芳 刘天航 杨凯昕 张鑫旺 王晶 Jia Ziyu;Lin Youfang;Liu Tianhang;Yang Kaixin;Zhang Xinwang;Wang Jing(School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044;Beijing Key Laboratory of Traffic Data Analysis and Mining(Beijing Jiaotong University),Beijing 100044;Key Laboratory of Intelligent Passenger Service of Civil Aviation(Civil Aviation Administration of China),Beijing 100044)
出处 《计算机研究与发展》 EI CSCD 北大核心 2020年第12期2481-2489,共9页 Journal of Computer Research and Development
基金 中央高校基本科研业务费专项资金(2020YJS025) 国家自然科学基金项目(61603029)。
关键词 运动想象 挤压激励模型 脑电信号 脑机接口 多尺度卷积 motor imagery squeeze-excitation model EEG signal Brain-computer Interface multiscale convolution
  • 相关文献

参考文献2

二级参考文献67

  • 1白露,马慧,黄宇霞,罗跃嘉.中国情绪图片系统的编制——在46名中国大学生中的试用[J].中国心理卫生杂志,2005,19(11):719-722. 被引量:317
  • 2刘涛生,马慧,黄宇霞,罗跃嘉,严进,刘伟志.建立情绪声音刺激库的初步研究[J].中国心理卫生杂志,2006,20(11):709-712. 被引量:12
  • 3MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 4MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 5李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 610 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 7Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 8Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 9Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 10Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.

共引文献659

同被引文献28

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部