期刊文献+

基于注意力机制的多通道CNN和BiGRU的文本情感倾向性分析 被引量:43

Text Sentiment Orientation Analysis of Multi-Channels CNN and BiGRU Based on Attention Mechanism
下载PDF
导出
摘要 近年来,卷积神经网络(convolutional neural network,CNN)和循环神经网络(recurrent neural network,RNN)已在文本情感分析领域得到广泛应用,并取得了不错的效果.然而,文本之间存在上下文依赖问题,虽然CNN能提取到句子连续词间的局部信息,但是会忽略词语之间上下文语义信息;双向门控循环单元(bidirectional gated recurrent unit,BiGRU)网络不仅能够解决传统RNN模型存在的梯度消失或梯度爆炸问题,而且还能很好地弥补CNN不能有效提取长文本的上下文语义信息的缺陷,但却无法像CNN那样很好地提取句子局部特征.因此提出一种基于注意力机制的多通道CNN和双向门控循环单元(MC-AttCNN-AttBiGRU)的神经网络模型.该模型不仅能够通过注意力机制关注到句子中对情感极性分类重要的词语,而且结合了CNN提取文本局部特征和BiGRU网络提取长文本上下文语义信息的优势,提高了模型的文本特征提取能力.在谭松波酒店评论数据集和IMDB数据集上的实验结果表明:提出的模型相较于其他几种基线模型可以提取到更丰富的文本特征,可以取得比其他基线模型更好的分类效果. CNN(convolutional neural network)and RNN(recurrent neural network)have been widely used in the field of text sentiment analysis and have achieved good results in recent years.However,there is a problem of contextual dependency between texts,although CNN can extract local features between consecutive words of a sentence,it ignores the contextual semantic information between words.BiGRU(bidirectional gated recurrent unit)network can not only solve the problem of gradient disappearance or gradient explosion in traditional RNN model,but also make up for the shortcomings that CNN can t effectively extract contextual semantic information of long text,while it can t extract local features as well as CNN.Therefore,this paper proposes a MC-AttCNN-AttBiGRU(multi-channels CNN and BiGRU network based on attention mechanism)model.The model can notice the important words for sentiment classification in the sentence.It combines the advantages of CNN to extract local features of text and BiGRU network to extract contextual semantic information of long text,which improves the text feature extraction ability of the model.The experimental results on the Tan Songbo Hotel Review dataset and IMDB dataset show that the proposed model can extract richer text features than other baseline models,and can achieve better classification results than other baseline models.
作者 程艳 尧磊波 张光河 唐天伟 项国雄 陈豪迈 冯悦 蔡壮 Cheng Yan;Yao Leibo;Zhang Guanghe;Tang Tianwei;Xiang Guoxiong;Chen Haomai;Feng Yue;and Cai Zhuang(School of Computer Information Engineering,Jiangxi Normal University,Nanchang 330022;Center of Management Decision Evaluation Research,Jiangxi Normal University,Nanchang 330022;School of Journalism and Communication,Jiangxi Normal University,Nanchang 330022;School of Mathematics and Computer,Yuzhang Normal University,Nanchang 330022)
出处 《计算机研究与发展》 EI CSCD 北大核心 2020年第12期2583-2595,共13页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61967011) 江西省自然科学基金项目(20202BABL202033) 江西省重点研发计划项目(20161BBE50086) 江西省教育厅科技重点项目(GJJ150299) 教育厅人文社科重点(重大)项目(JD19056)。
关键词 卷积神经网络 文本情感倾向性分析 双向门控循环单元 注意力机制 多通道 CNN(convolutional neural network) text sentiment orientation analysis BiGRU(bidirectional gated recurrent unit) attention mechanism multi-channels
  • 相关文献

参考文献5

二级参考文献31

  • 1许云,樊孝忠,张锋.一种不需分词的中文文本分类方法[J].北京理工大学学报,2005,25(9):778-781. 被引量:5
  • 2Pang B, Lee L. Seeing stars: Exploiting class relation- ships for sentiment categorization with respect to rating scales[C]//Proceedings o~ the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2005: 115-124.
  • 3LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [C]//Pro- ceedings of the IEEE, 1998, 86(11) : 2278-2324.
  • 4Yih W, He X, Meek C. Semantic parsing for single-rela- tion question answering[C]//Proceedings of ACL 2014.
  • 5Shen Y, He X, Gao J, et al. Learning semantic repre- sentations using convolutional neural networks for web search[C]//Proceedings of the companion publication of the 23rd international conference on World wide web companion. International World Wide Web Confer- ences Steering Committee, 2014: 373-374.
  • 6Blunsom P, Grefenstette E, Kalehbrenner N. A conv- olutional neural network for modelling sentences[C]// Proceedings of the 52nd Annual Meeting of the Associ- ation for Computational Linguistics. 2014.
  • 7Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch[J].The Journal of Ma- chine Learning Research, 2011, 12: 2493-2537.
  • 8dos Santos C N, Gatti M. Deep convolutional neural networks for sentiment analysis of short texts[C]// Proceedings of the 25th International Conference on Computational Linguistics (COLING). Dublin, Ire-land. 2014.
  • 9Kim Y. Convolutional neural networks for sentence classification[C]//Proceedings of the EMNLP,2014.
  • 10Turney P D. Thumbs up or thumbs down? : semantic orientation applied to Unsupervised classification of reviews[C]//Proceedings of the 40th annual meeting on association for computational linguistics. Associa- tion for Computational Linguistics, 2002: 417-424.

共引文献251

同被引文献414

引证文献43

二级引证文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部