期刊文献+

一种分布式异构带宽环境下的高效数据分区方法 被引量:6

An Efficient Data Partitioning Method in Distributed Heterogeneous Bandwidth Environment
下载PDF
导出
摘要 在分布式大数据处理框架的作业运行过程中,会有大量的数据通过网络传输,数据在各节点之间传输所需的时间已成为作业运行的主要开销之一.在节点异构带宽的情况下,因为带宽瓶颈节点的存在,传统的数据分区方法效率低下.针对这个问题,建立了节点间的数据传输模型,该模型以降低数据传输时间为目标,根据各节点的上下行带宽和初始数据量大小,计算出各节点的最优数据分发比例.以该模型为基础,设计了基于带宽的数据分区方法,该数据分区方法使得各节点按最优数据分发比例来分配数据.最后在Apache Flink框架中将基于带宽的数据分区方法进行了实现,并通过实验进行了验证.实验结果表明:异构带宽条件下,基于带宽的数据分区方法可以有效减少数据分区所需的时间. A large quantity of data is transmitted through the network during the process in distributed big data processing framework,resulting in the time consumption for data transmission between each node becomes one of the main costs of the operation.However,in the case of heterogeneous bandwidth of nodes,traditional data partitioning methods such as Hash partitioning or range partitioning will be inefficient,due to the existence of bandwidth bottleneck nodes.Data partitioning is necessary for big data processing and inefficient data partitioning methods would significantly increase the running time of jobs.We therefore propose a data transmission model between nodes to reduce time consumption in distributed heterogeneous bandwidth networks.The model calculates each node s optimal data distribution ratio to minimize the data transfer time,according to its uplink and downlink bandwidth as well as the initial data size.Besides,a bandwidth-based data partitioning method is designed based on the proposed model,enabling each node to allocate data under the optimal data distribution ratio.We demonstrate the effectiveness of our bandwidth-based data partitioning method through the implementation in the Apache Flink framework and have significantly improved efficiency.Extensive experimental results show that the bandwidth-based data partitioning method can effectively reduce the time consumption of data partitioning in distributed heterogeneous bandwidth conditions.
作者 马卿云 季航旭 赵宇海 毛克明 王国仁 Ma Qingyun;Ji Hangxu;Zhao Yuhai;Mao Keming;Wang Guoren(School of Computer Science and Engineering,Northeastern University,Shenyang 110169;Software College,Northeastern University,Shenyang 110169;School of Computer Science and Technology,Beijing Institute of Technology,Beijing 100081)
出处 《计算机研究与发展》 EI CSCD 北大核心 2020年第12期2683-2693,共11页 Journal of Computer Research and Development
基金 国家重点研发计划项目(2018YFB1004402) 国家自然科学基金项目(61772124)。
关键词 数据分区 Apache Flink 负载均衡 异构带宽 分布式系统 data partitioning Apache Flink load balancing heterogeneous bandwidth distributed system
  • 相关文献

参考文献2

二级参考文献11

  • 1The Spark Software Foundation.Spark[EB/OL].[2015-01-08].http://spark.apache.org.
  • 2The Apache Software Foundation.Hadoop[EB/OL].[2015-01-08].http://hadoop.apache.org.
  • 3Xu Xiaolong,Cao Lingling,Wang Xinheng.Adaptive Task Scheduling Strategy Based on Dynamic Workload Adjustment for Heterogeneous Hadoop Clusters[J].IEEE Systems Journal,2014,(99):1-12.
  • 4Nightingale E B,Chen P M,Flinn J.Speculative Execution in a Distributed File System[J].ACM Transactions on Computer Systems,2006,24(4):361-392.
  • 5Yong M,Garegrat N,Mohan S.Towards a Resource Aware Scheduler in Hadoop[C]//Proceedings of the 7th IEEE International Conference on Web Services.Los Angeles,USA:IEEE Computer Society,2009:102-109.
  • 6Zaharia M,Chowdhury M,Das T,et al.Resilient Distributed Datasets:A Fault-tolerant Abstraction for In-memory Cluster Computing,UCB/EECS-2011-82[R].University of California,Berkeley,2012.
  • 7Zaharia M,Chowdhury M,Franklin M J,et al.Spark:Cluster Computing with Working Sets,UCB/EECS-2010-53[R].University of California,Berkeley,2010.
  • 8Guo Zhenhua,Fox G,Zhou Mo.Investigation of Data Locality in MapReduce[C]//Proceedings of the 12th IEEE/ACM International Symposium on Cluster,Cloud and Grid Computing.Ottawa,Canada:IEEE Computer Society,2012:419-426.
  • 9Typesafe Inc.akka[EB/OL].[2015-01-08].http://akka.io/.
  • 10Massie M,Li B,Nickoles B,et al.Monitoring with Ganglia[M].Sebastopol,USA:O'Reilly Media,2012.

共引文献28

同被引文献57

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部