期刊文献+

Computational screening and design of nanoporous membranes for efficient carbon isotope separation 被引量:2

下载PDF
导出
摘要 Stable isotopes have been routinely used in chemical sciences,medical treatment and agricultural research.Conventional technologies to produce high-purity isotopes entail lengthy separation processes that often suffer from low selectivity and poor energy efficiency.Recent advances in nanoporous materials open up new opportunities for more efficient isotope enrichment and separation as the pore size and local chemical environment of such materials can be engineered with atomic precision.In this work,we demonstrate the unique capability of nanoporous membranes for the separation of stable carbon isotopes by computational screening a materials database consisting of 12,478 computation-ready,experimental metal-organic frameworks(MOFs).Nanoporous materials with the highest selectivity and membrane performance scores have been identified for separation of^(12)CH_4/^(13)CH_4 at the ambient condition(300 K).Analyzing the structural features and metal sites of the promising MOF candidates offers useful insights into membrane design to further improve the performance.An upper limit of the efficiency has been identified for the separation of^(12)CH_4/^(13)CH_4 with the existing MOFs and those variations by replacement of the metal sites.
出处 《Green Energy & Environment》 SCIE CSCD 2020年第3期364-373,共10页 绿色能源与环境(英文版)
基金 financially supported by the National Science Foundation Harnessing the Data Revolution Big Idea under Grant No.NSF 1940118 supported by the State Key Laboratory of Chemical Engineering(SKL-CHE20)。
  • 相关文献

参考文献1

共引文献19

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部