摘要
针对基于F范数的判别子空间聚类算法存在对数据适应性差的缺陷,提出一种基于l2,p-范数回归的判别子空间聚类算法。扩展最小二乘线性判别分析的目标函数到l2,p-范数意义下,利用迭代重加权最小二乘法求解目标函数。将基于l2,p-范数的线性判别分析和K-means聚类算法结合到单一的聚类框架中,从而构成广义的判别子空间聚类算法。对比实验结果表明,该算法有效地提高了判别子空间聚类对不同结构数据集的适应性。
The present F-norm based discriminant subspace clustering algorithms have poor adaptability.A discriminant subspace clustering(l2,p-DSC)algorithm based on l2,p-norm regression is proposed.In this algorithm,the objective function of Linear Discriminant Analysis based on Least Square(LSLDA)is extended to the sense of l2,p-norm and solved using the iterative re-weighted least squares method.Then,the linear discriminant analysis and K-means clustering algorithm based on the l2,p-norm are combined into a single clustering framework to form a generalized DSC algorithm.Experimental results show that the proposed algorithm can improve the adaptability of discriminant subspace clustering for different structural data sets.
作者
支晓斌
毕龙涛
ZHI Xiaobin;BI Longtao(School of Science,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;School of Communication and Information Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)
出处
《西安邮电大学学报》
2020年第3期77-81,共5页
Journal of Xi’an University of Posts and Telecommunications
基金
国家自然科学基金项目(61671377,61102095,61571361,11401045)
陕西省教育厅专项科学研究计划项目(18JK0719)
西安邮电大学新星团队项目(xyt2016-01)。
关键词
判别子空间聚类
最小二乘判别分析
l2
p-范数
discriminant subspace clustering
least square linear discriminant analysis
l2,p-norm