期刊文献+

新型缓蚀剂对阻挡层为Ru/TaN的Cu图形片CMP的影响 被引量:5

Effects of New Corrosion Inhibitor on CMP of Cu Patterned Wafer with Ru/TaN as Barrier Layer
下载PDF
导出
摘要 研究了新型缓蚀剂2,2′-{[(甲基-1H-苯并三唑-1-基)甲基]亚氨基}双乙醇(TT)和抛光液pH值对铜图形片(以Ru/TaN为阻挡层)化学机械平坦化(CMP)性能的影响。实验结果表明,Cu的去除速率及静态腐蚀速率随着抛光液pH值的增高而增大,随着TT体积分数的升高而逐渐下降;TT对Cu去除速率和静态腐蚀速率的抑制效果随着抛光液pH值的升高而降低。缓蚀剂TT能够有效减小碟形坑及蚀坑的深度,对于铜图形片不同线宽的碟形坑及不同密度的蚀坑均有较好的修正效果,且能够自停止在阻挡层Ru/TaN薄膜,其CMP机理为TT与Cu形成Cu-TT钝化膜吸附在Cu表面,阻挡了Cu的进一步腐蚀,提高了CMP性能。 The influences of the pH value of the polishing solution and a new corrosion inhibitor 2,2′-{[(methyl-1 H-benzotriazol-1-yl) methyl] imino} diethanol(TT) on chemical mechanical planarization(CMP) performance of Cu patterned wafer with Ru/TaN as barrier layer were studied.The experimental results show that the removal rate and static corrosion rate of Cu increase with the increase of the pH value of the polishing solution, and gradually decrease with the increase of TT volume fraction. Meanwhile, the passivation effect of TT on removal rate and static corrosion rate of Cu decreases with the increase of the pH value of the polishing solution. The corrosion inhibitor TT can effectively reduce the depths of the dishing pit and erosion pit. It has a good correction effect on dishing pit with different line widths of Cu patterned wafer and erosion pit with different densities, and it can self-stop on the barrier layer Ru/TaN film. The CMP mechanism is that Cu-TT passivation film formed by TT and Cu is adsorbed on the surface of Cu, which can prevent further corrosion of Cu and improve the CMP performance.
作者 张雪 周建伟 王辰伟 王超 Zhang Xue;Zhou Jianwei;Wang Chenwei;Wang Chao(School of Electronic and Information Engineering,Hebei University of Technology,Tianjin 300130,China;Tianjin Key Laboratory of Electronic Materials and Devices,Tianjin 300130,China)
出处 《半导体技术》 CAS 北大核心 2020年第11期892-898,共7页 Semiconductor Technology
基金 国家科技重大专项资助项目(2016ZX02301003-004-007)。
关键词 Ru/TaN阻挡层 Cu图形片 化学机械平坦化(CMP) 去除速率 静态腐蚀 Ru/TaN barrier layer Cu patterned wafer chemical mechanical planarization(CMP) removal rate static corrosion
  • 相关文献

参考文献1

二级参考文献50

  • 1GARNER F H, HALE A R. Corrosion in the petroleum industry part 2 [J]. Anti-corrosion Methods and Materials, 1955, 2(6): 177-181.
  • 2SARVER E, EDWARDS M. Effects of flow, brass location, tube materials and temperature on corrosion of copper plumbing devices [J]. Corrosion Science, 2011, 53(5): 1813-1824.
  • 3AI J Z, GUO X P, CHEN Z Y. The adsorption behavior and corrosion inhibition mechanism of anionic inhibitor on galvanic electrode in 1% NaCl solution [J].Applied Surface Science, 2006, 253(2): 683-688.
  • 4RAHMAN AB M, KUMAR S, GERSON AR. Galvanic corrosion of laser weldments of AA6061 aluminum alloy [J]. Corrosion Science, 2007,49(12): 4339-4351.
  • 5VARELA F E, KURATA Y, SANADA N. The influence of temperature on the galvanic corrosion of a cast iron-stainless steel couple [J]. Corrosion Science, 1997,39(4): i75-788.
  • 6EL-DAHSHAN M E, SHAMS EL DIN A M, HAGGAG H H. Galvanic corrosion in the systems titaniuml316L stainless steel! Al copper in Arabian water [J]. Desalination, 2002, 142(2): 161-169.
  • 7DESHPANDE K B. Validated numerical modelling of galvanic corrosion for couples: Magnesium alloy (AE44}-mild steel and AE44--aluminium alloy (AA6063) in brine solution [J]. Corrosion Science, 2010, 52(10): 3514-3522.
  • 8GLASS G K, ASHWORTH V. The corrosion behaviour of the zinc-mild steel galvanic cell in hot sodium bicarbonate solution [J]. Corrosion Science, 1985,25(11): 971-983.
  • 9PROSEK T, NAZAROV A, BEXELL U, THIERRY D, SERAK J. Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions [J]. Corrosion Science, 2008, 50(8): 2216-2231.
  • 10YIN Z F, YAN M L, BAI Z Q, ZHAO W Z, ZHOU W J. Galvanic corrosion associated with SM 80SS steel and Ni-based alloy G3 couples in NaCI solution [J]. Electrochimica Acta, 2008, 53(22): 6285-6292.

共引文献16

同被引文献41

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部