期刊文献+

基于概率优势关系粗糙集的第三方物流供应商选择评价 被引量:1

Selection and Evaluation of Third-party Logistics Suppliers Based on Rough Set of Probability Dominance Relations
下载PDF
导出
摘要 近年来,大多数企业基于节约成本、提高服务水平和企业持续发展的考虑,选择将非核心的物流业务外包给更高效、更专业的第三方物流供应商。但大多数企业在选择物流供应商时仍选用较为传统的评价方法,主观性较强。因此,文中运用一种不需要确定指标权重、完全依赖原始数据、客观性强的概率优势关系粗糙集选择评价模型,以MY公司为例进行分析,从而得出客观合理的供应商优劣评价结果,验证了该选择评价模型与实际评价结果相符,为企业日后进行第三方物流供应商选择时提供更科学合理的理论选择依据。 In recent years,most companies have chosen to outsource non-core logistics services to more efficient and professional third-party logistics providers based on considerations of cost savings,improved service levels and sustainable development of the enterprise.However,most companies still use more traditional evaluation methods when choosing logistics suppliers,which is more subjective.Therefore,this paper uses a rough set selection evaluation model of probability dominance relations that does not need to determine the index weight,completely depends on the original data,and has strong objectivity.The analysis is carried out with MY company as an example to obtain objective and reasonable evaluation results of supplier advantages and disadvantages.It is verified that the selection evaluation model is consistent with the actual evaluation results,and provides a more scientific and rational theoretical basis for the company to choose a third-party logistics supplier in the future.
作者 钟谨贵 翁世洲 朱俊 ZHONG Jin-gui;WENG Shi-zhou;ZHU Jun(College of Economics and Management,Guangxi Normal University for Nationalities,Chongzuo 532200,China)
出处 《物流工程与管理》 2020年第11期10-12,5,共4页 Logistics Engineering and Management
基金 广西民族师范学院国家级大学生创新创业训练计划项目“数据挖掘算法在第三方物流供应商评价中的应用研究”(201810604031) 广西高校中青年教师基础能力提升项“粗糙集与层次分析融合的智能算法及其在物流决策中的应用研究”(2017KY0847) “混合型不完备数据的邻域粗糙集分类方法”(2020KY20012)。
关键词 概率优势关系粗糙集 第三方物流供应商 选择评价 rough set of probability dominance relations third-party logistics supplier selection and evaluation
  • 相关文献

参考文献7

二级参考文献63

共引文献206

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部