摘要
针对医学图像亮度和对比度不足导致相邻组织间的边缘模糊问题,提出了一种基于磷虾群优化的医学图像对比度增强方法。该方法应用平稳极限通过使用具有可调参数的直方图的最小值、最大值、平均值和中值来裁剪直方图,根据残差像素的重新分配过程生成改良直方图,基于包含两个不同目标函数的适应度函数自动调整可调参数。实验表明与其他方法相比,文章方法在对比度、信息量、边缘细节和结构相似性方面均优于对比的方法。
To solve the problem of edge blurring between adjacent tissues caused by insufficient brightness and contrast of medical images,a medical image contrast enhancement method based on improved krill herd optimization is proposed.In this method,the stationary limit is used to cut the histogram by using the minimum value,maximum value,average value and median value of the histogram with adjustable parameters,and the improved histogram is generated according to the redistribution process of residual pixels.The adjustable parameters are automatically adjusted based on the fitness function containing two different objective functions.Based on the krill herd optimization algorithm.The experimental results show that compared with other methods,this method is superior to the contrast method in contrast,information,edge details and structure similarity.
作者
聂敏
NIE Min(School of Data Sciences,Tongren University,Tongren554300,China)
出处
《电脑与信息技术》
2020年第6期7-10,共4页
Computer and Information Technology
关键词
磷虾群优化
直方图均衡
自适应函数
平稳极限
krill herd optimization
histogram equalization
adaptive function
plateau limit