摘要
食品在包装过程中通常需要将塑料薄膜进行加热,通过加热对包装袋体进行塑封。食品塑封温控系统通常是一个非线性、时变性的复杂系统,传统PID控制方法并不能实现温度的精确控制,为此设计一种BP神经网络PID的食品包装塑料薄膜横封温度控制算法。介绍塑料薄膜横封结构和横封温度控制原理。在传统PID控制器中引入BP神经网络控制算法,通过神经网络的自身学习来调整权系数,确保被控对象处于稳定工作状态。仿真结果表明,基于BP神经网络PID控制算法进行塑料薄膜横封温度控制时,系统拥有更快的响应速度、更强的抗干扰能力,超调量也较小。
In the process of food packaging, it is usually necessary to heat the plastic film to plastic seal the packaging bag. The temperature control system of food packaging plastic film is usually a non-linear and time-varying complex system. The traditional PID control method cannot achieve the precise control of temperature. Therefore, design a BP neural network PID control algorithm for the temperature control of food packaging plastic film. The structure of plastic film transverse seal and the principle of transverse seal temperature control are introduced. The BP neural network control algorithm is introduced into the traditional PID controller. The weight coefficient is adjusted by the self-learning of neural network to ensure that the controlled object is in a stable working state. The simulation results show that the system has faster response speed, stronger anti-interference ability and smaller overshoot when the PID control algorithm based on BP neural network is used to control the temperature of plastic film transverse seal.
作者
杨丹
YANG Dan(Changzhou College of Information Technology,Changzhou 213164)
出处
《食品工业》
CAS
北大核心
2020年第10期225-228,共4页
The Food Industry