期刊文献+

基于多维度LSTM模型的短时交通流预测 被引量:13

Short-term traffic flow prediction based on multi-dimensional LSTM model
下载PDF
导出
摘要 提出一种基于长短时记忆神经网络(Long Short-Term Memory,LSTM)的交通流预测模型,不同于单一因素预测,模型深入探究时间占有率等因素对预测结果的影响,从而进行多维度的短时交通流预测。最后以长沙市某实地数据对模型预测结果的精确性进行检验。研究结果表明:在以10 min为间隔预测中,与时间占有率组合的多维度因素速度预测和流量预测的平均绝对误差相较单一因素分别由4.6 km/h降至2.78 km/h,9.65辆降至5.8辆。加入时间占有率等其他因素后,模型预测的精度显著提高。 Different from single-factor prediction,a traffic flow prediction model based on Long Short-Term Memory was developed to explore the influence of time occupancy and other factors on the prediction results,so as to conduct multi-dimensional short-term traffic flow prediction.A real-world traffic data in Changsha was used to test the accuracy of the model.The results show that in the 10-minute interval prediction,compared with the single-dimensional model,the MAE of the speed in the multi-dimensional model can be substantially reduced from 4.6 km/h to 2.78 km/h,and that of volumes from 9.65 to 5.8.Therefore,taking other factors as time occupancy into consideration can significantly improve the accuracy of the traffic prediction models.
作者 陈治亚 王小军 CHEN Zhiya;WANG Xiaojun(School of Traffic and Transportation Engineering,Central South University,Changsha 410075,China)
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2020年第11期2946-2952,共7页 Journal of Railway Science and Engineering
基金 湖南省自然科学基金资助项目(2018JJ2537)。
关键词 智能交通 交通流预测 LSTM 神经网络 intelligent transportation traffic flow prediction LSTM neural network
  • 相关文献

参考文献8

二级参考文献49

共引文献217

同被引文献73

引证文献13

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部