期刊文献+

红荧烯类似物C38H24S2的单线态分裂过程

Singlet exciton fission in rubrene analogueue C38H24S2
下载PDF
导出
摘要 单线态分裂可以规避光电转换中的能量损失,从而提高光电转换效率。利用飞秒时间分辨瞬态吸收光谱技术研究了在不同激发条件下溶于甲苯溶液的红荧烯类似物C38H24S2的激发态动力学过程。在550 nm和365 nm光激发下,激发单线态与基态分子发生碰撞,分别在8.2 ps和3 ps时产生了关联的三线态激子对。但在550 nm光激发下未观察到独立的三线态激子信号;而在365 nm光激发下,关联的三线态激子对的诱导吸收信号发生了转移,在探测波长550 nm附近观察到独立的三线态激子的吸收。在460 nm光激发下,利用奇异值分解的方法在瞬态吸收光谱中观察到了单线态分裂过程。 Singlet fission can circumvent energy-loss and improve the photoelectric conversion efficiency of solar cells.The excited state dynamics of rubrene analogueue C38H24S2 in toluene solution under different excitation conditions is investigated using femtosecond time-resolved transient absorption spectroscopy.Under the excitation of 550 nm and 365 nm,the excited singlet excitons collide with ground state molecules,and the correlated triplet pairs are generated at 8.2 ps and 3 ps,respectively.However,no independent triplet state signal is observed with the excitation wavelength of 550 nm.While under the excitation of 365 nm,the induced absorption signal of the triplet pair shifts,and the absorption of independent triplet exciton is observed around the detection wavelength of 550 nm.Besides,the singlet fission is observed by using the singular value decomposition method in the transient absorption spectrum with the excitation wavelength of 460 nm.
作者 秦朝朝 宋迪迪 周忠坡 QIN Chaochao;SONG Didi;ZHOU Zhongpo(School of Physics,Henan Normal University,Xinxiang 453007,China;Henan Key Laboratory of Infrared Materials&Spectrum Measurements and Applications,Xinxiang 453007,China)
出处 《量子电子学报》 CAS CSCD 北大核心 2020年第6期633-640,共8页 Chinese Journal of Quantum Electronics
基金 国家自然科学基金,12074104,11804084 河南省科技攻关研究项目,182102210369 河南省教育厅重点项目,19A140011 河南省高等学校青年骨干教师培养计划,2019GGJS065。
关键词 光谱学 单线态分裂 飞秒时间分辨瞬态吸收光谱 红荧烯类似物C38H24S2 三线态激子 超快动力学 spectroscopy singlet fission femtosecond time-resolved transient absorption spectrum rubrene analogueue C38H24S2 triplet exciton ultrafast dynamics
  • 相关文献

参考文献5

二级参考文献213

  • 1朱井义,王丙星,郭玮,王艳秋,王利.Simplified Model for Analysing Ion/Photoelectron Images[J].Chinese Physics Letters,2007,24(7):1922-1925. 被引量:1
  • 2Shockley W,Queisser H J 1961 J.Appl.Phys.32 510.
  • 3Würfel P 1997 Sol.Energy Mater.Sol.Cells 46 43.
  • 4O’Dwyer M F,Humphrey T,Lewis R A,Zhang C 2008 Microelectron.J.39 656.
  • 5Conibeer G,Jiang C W,K?nig D,Shrestha S,Walsh T,Green M 2008 Thin Solid Films 516 6968.
  • 6Ellingson R J,Beard M C,Johnson J C,Yu P R,Micic O I,Nozik A J,Shabaev A,Efros A L 2005 Nano Lett.5 865.
  • 7Beard M C,Knutsen K P,Yu P R,Luther J M,Song Q,Metzger W K,Ellingson R J,Nozik A J 2007 Nano Lett.7 2506.
  • 8Nozik A J,Beard M C,Luther J M,Law M,Ellingson R J,Johnson J C 2010 Chem.Rev.110 6873.
  • 9Hanna M,Nozik A 2006 J.Appl.Phys.100 074510.
  • 10Zhang B,Zhang C F,Wang R,Tan Z A,Liu Y L,Guo W,Zhai X L,Cao Y,Wang X Y,Xiao M 2014 J.Phys.Chem.Lett.5 3462.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部