期刊文献+

复杂背景下的红外图像弱小目标检测 被引量:8

Infrared small target detection under various complex backgrounds
原文传递
导出
摘要 针对红外图像中的弱小目标极易受到背景杂波干扰,导致检测结果不准确的问题,提出了一种基于视觉显著性和支持向量数据描述的红外图像弱小目标检测方法。首先,对红外图像进行显著性检测,以抑制杂波,凸显红外图像中的弱小目标;然后,在显著图中提取候选目标,并自适应地确定候选目标在原始红外图像中的目标区域。根据红外图像弱小目标特点,生成仿真红外图像弱小目标,训练支持向量数据描述模型。最后,采用支持向量数据描述模型,对候选目标区域进行判别,提取红外弱小目标。实验结果表明,该方法能够有效抑制背景杂波和噪声的干扰,显著提高红外弱小目标的检测性能。 To solve the problem that small targets in infrared images are easily subject to a large amount of background clutter,leading to unsatisfactory detection results,an infrared image detection method based on visual saliency and support vector data description is proposed.Firstly,the saliency detection is applied to the infrared image to suppress the clutter and highlight the small targets.Second,the candidate targets are extracted from the saliency image,and the target area of the candidate targets in the original infrared image is adaptively determined.According to the characteristics of small target in infrared image,the small targets are simulated,and a support vector data description model is trained.Finally,the support vector data description model is used to distinguish the candidate target areas and extract the infrared small targets.The experimental results show that this method can effectively suppress the interference of background clutter and noise,and improve the detection performance of the infrared small targets.
作者 陈绵书 孙闻晞 李梦莹 赵岩 CHEN Mian-shu;SUN Wen-xi;LI Meng-ying;ZHAO Yan(College of Communication Engineering,Jilin University,Changchun 130022,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第6期2288-2294,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61771220).
关键词 信息处理技术 红外弱小目标 显著性检测 支持向量数据描述 information processing technology infrared small target saliency detection support vector data description
  • 相关文献

参考文献3

二级参考文献63

  • 1董维科,向健勇,袁胜春.一种红外弱小目标精跟踪方法[J].激光与红外,2005,35(3):184-186. 被引量:7
  • 2李秋华,李吉成,沈振康.基于多尺度特征融合的红外图像小目标检测[J].系统工程与电子技术,2005,27(9):1557-1560. 被引量:8
  • 3张惠娟,梁彦,程咏梅,潘泉,张洪才.运动弱小目标先跟踪后检测技术的研究进展[J].红外技术,2006,28(7):423-430. 被引量:26
  • 4林武文,徐锦,徐世录.红外探测技术的发展[J].激光与红外,2006,36(9):840-843. 被引量:23
  • 5Kadir Timor, Brady Michael. Saliency, scale and image description[J]. International Journal of Computer Vision, 2001, 45(2) :83-105.
  • 6Gesu Vito Di, Valenti Cesare, Strinati Laurent. Local operators to detect regions of interest [ J ]. Pattern Recognition Letters, 1997, 18(11-13): 1077-1081.
  • 7Itti Laurent, Koch Christof, Niebur Ernst. A model of saliency- based visual attention for rapid scene analysis [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998, 20(11):1254-1259.
  • 8Barlow H B. Possible principles underlying the transformation of sensory messages [ C ]//Sensory Communication. Cambridge, MA: MIT Press, 1961:217-234.
  • 9Daniel L Ruderman. The statistics of natural images [ J ]. Network: Computation in Neural Systems, 1994, 5 (4) : 517- 548.
  • 10Hou Xiaodi, Zhang Liqing. Saliency detection: a spectral residual approach [ C ]//IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA: IEEE, 2007 : 1 -8.

共引文献70

同被引文献63

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部