期刊文献+

基于内环补偿的旋转液压弹性驱动器扭矩控制研究

Study of Torque Control of Rotating Hydro-elastic Actuator Based on Robust Internal-loop Compensator
下载PDF
导出
摘要 液压驱动系统具有较高的功率质量比和耐久性特点,但由于系统非线性和高输出刚度,无法应用于交互式控制系统中,尤其是在机器人领域。提出一种力/力矩控制策略,设计了液压驱动器鲁棒内环补偿器(RIC),通过将内环补偿器与外环控制器解耦,将力/力矩控制问题简化为运动控制问题。提出连杆端运动反馈策略,采用扭转弹簧的交叉并联连接方式,建立了驱动器输出扭矩反馈控制器。对液压驱动器转角控制性能和HEA扭矩控制性能进行了试验验证,结果表明所设计的基于非线性鲁棒内环补偿器的HEA具有扭矩可控性、可反向驱动性和强鲁棒性。 Hydraulic drive system has high power-weight ratio and durability,but it cannot be used in interactive control system because of its non-linearity and high output stiffness,especially in the field of robots.A force/moment control strategy was proposed,and a robust internal-loop compensator(RIC)for hydraulic actuators was designed.By decoupling the internal-loop compensator and the outer-loop controller,the force/moment control problem was simplified to a motion control problem.A motion feedback strategy for the connecting rod end was proposed.The output torque feedback controller of the actuator was established by means of the cross-parallel connection of torsion springs.The experimental results show that the designed HEA based on the nonlinear robust inner loop compensator has the characteristics of torque controllability,reversible drive and strong robustness.
作者 魏世龙 李钢 WEI Shilong;LI Gang(Jilin Railway Vocational and Technical College,Jilin Jilin 132200,China;Anhui University of Science and Technology,Huainan Anhui 232001,China)
出处 《机床与液压》 北大核心 2020年第22期104-108,139,共6页 Machine Tool & Hydraulics
基金 安徽省自然科学基金(19KJB460088)。
关键词 旋转液压弹性驱动器 鲁棒内环补偿器 扭矩控制 反向驱动 Rotating hydro-elastic actuator Robust internal-loop compensator Torque control Reversible drivability
  • 相关文献

参考文献9

二级参考文献110

  • 1PRATI" G A, WILLIAMSON M M. Series elastic actuators [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Pittsburgh, USA, 1995.
  • 2ROBINSON D W, PRATY J E, PALUSKA D J, et al. Se- ries elastic actuator development for a biomimetic walking robot[ C]//IEEE/ASME International Conference on Ad- vanced Intelligent Meehatronies. [ s. 1. ], 1999.
  • 3ROBINSON D W, PRATT G A. Force controllable hydro-e- lastic actuator[ C ]// IEEE International Conferenee on Ro- botics and Automation. San Francisco, USA, 2000.
  • 4PRATT J E, KRUPP B T. Series elastic actuators for legged robots [ C ]// Unmanned Ground Vehicle Technology VI. Orlando, USA, 2004.
  • 5PRATT J E, KRUPP B T, Morse C J, et al. The RoboKnee: an exoskeleton for enhancing strength and en- durance during walking [ C]//IEEE International Confer- ence on Roboties and Automation. New Orleans, USA, 2004.
  • 6PRATT J E, KRUPP B, RAGUSILA V, et al. The yobot- ics-IHMC lower body humanoid robot[ C]//IEEE/RSJ In- ternational Conference on Intelligent Robots and Systems, (IROS 2009). St. Louis, USA, 2009.
  • 7PALUSKA D, HERR H. Series elasticity and actuator pow- er output[ C ]//IEEE International Conference on Robotics and Automation. Orlando, USA, 2006.
  • 8PRATt J, PRATY G. Intuitive control of a planar bipedal walking robot[ C ]// IEEE International Conference on Ro- botics and Automation. Leuven, Belgium, 1998.
  • 9MA Hongwen, QING Zhizhong, WANG Liquan. Motion space analysis of a new hybrid elastic walking leg [ C ]// Proceedings of 2010 the 3rd International Conference on Computational Intelligence and Industrial Application. Wu- han, China, 2010.
  • 10SUGAR T G, KUMAR V. Design and control of a compli- ant parallel manipulator [ J ]. Journal of Mechanical De- sign, 2002, 124(4): 676-683.

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部