摘要
考虑了一阶双曲方程约束的最优分布控制问题,利用拉格朗日乘子方法给出一阶双曲最优控制问题的最优性条件,即状态方程、伴随方程和变分不等式。双曲方程中对流占主导,标准的有限体积元方法会产生物理震荡,该文采用高阶迎风有限体积元方法和变分离散相结合的方法对最优性条件进行数值离散。分别对最优性解的控制、状态和伴随给出了误差估计的结果。数值实验验证了方法的有效性和误差分析的结果。
In this paper,the optimal distributed control problem with constraints for first-order hyperbolic equations is considered.By using the Lagrange multiplier method,the optimality conditions of the first-order hyperbolic optimal control problem are given,which consist of the state equation,the adjoint equation and the variational inequality.Convection is dominant in hyperbolic equation,and the standard finite volume element method will produce physical oscillation.In this paper,the high-order upwind finite volume element method and the variational discretization method are used to discretize the optimality conditions.The error estimates for the control,state and adjoint of the optimal solutions are given.Numerical experiments verify the effectiveness of the method and the results of error analysis.
作者
张倩
ZHANG Qian(School of Artif icial Intelligence and Information Technology,Nanjing University of Chinese Medicine,Nanjing,Jiangsu Province,210023 China)
出处
《科技资讯》
2020年第32期254-256,共3页
Science & Technology Information
基金
江苏省自然科学基金青年项目《尖锐界面流体模型的非拟合网格方法及其在微血管流中的应用》(项目编号:BK20200848)。
关键词
双曲最优控制
有限体积元
最优性条件
变分离散
Hyperbolic optimal control
Finite volume element
Optimality conditions
Variational discretization