期刊文献+

图Kn-Cn-1的沙堆群

The sandpile group of Kn-Cn-1
下载PDF
导出
摘要 一个连通图的沙堆群,又称临界群或雅可比群,是一个有限的阿贝尔群,其阶数为图中生成树的数目.本文用代数方法确定了Kn-Cn-1的沙堆群的结构,Kn-Cn-1表示从完全图Kn中删掉圈Cn-1上的n-1条边所得到的图. The sandpile group of a connected graph,also known as critical group,or Jacobian group,is a finite Abelian group,whose order is the number of spanning trees in the graph.In this paper,using the algebraic method,we completely determine the structure of the sandpile group of Kn-Cn-1,where Kn-Cn-1 denotes the graph obtained by removing from the complete graph Kn the n-1 edges of a cycle Cn-1.
作者 周玉芳 陈海燕 ZHOU Yufang;CHEN haiyan(School of Sciences,Jimei University,Xiamen 361021,China)
机构地区 集美大学理学院
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第6期959-963,共5页 Journal of Xiamen University:Natural Science
关键词 沙堆群 几乎完全图 Smith标准型 拉普拉斯矩阵 sandpile group nearly complete graph Smith normal form Laplacian matrix
  • 相关文献

参考文献1

二级参考文献14

  • 1Bacher, R., de la Harpe, P.: The lattices of integral flows and the lattices of integral cuts of a finite graph. Bull. Soc. Math. France, 125, 167-198 (1997).
  • 2Biggs, N. L.: Algebraic potential theory on graphs. Bull. London Math. Soc., 29, 641-682 (1997).
  • 3Biggs, N. L.: Chip-Firing and the critical group of a graph. Journal of Algebraic Combinatorics, 9, 25-45 (1999).
  • 4Godsil, C., Royle, G., Algebraic Graph Theory, GTM 207, Springer-Verlag, New York, 2001.
  • 5Cori, R., Rossin, D.: On the sandpile group of dual graphs. European J. Combin., 21, 447-459 (2000).
  • 6Cori, R., Leborgne, Y.: Sandpile model and Tutte polynomial. Adv. Appl. Math., 30, 44-52 (2003).
  • 7Dartois, A., Fiorenzi, F., Francini, P.: Sandpile group on the graph :Dn of the dihedral group. European J. Combin., 24, 815-824 (2003).
  • 8Merris, R.: Unimodular equivalence of graphs. Linear Algebra Appl., 173, 181-189 (1992).
  • 9Lorenzini, D, J.: A finite group attached to the Laplacian of a graph. Discrete Math., 91, 277-282 (1991).
  • 10Jacobson, B., Niedermaier, A., Reiner, V.: Critical groups for complete multipartite graphs and cartesian products of complete graphs. J. Graph Theory, 44, 231-250 (2003).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部