期刊文献+

Logistic与SEIR结合模型预测新型冠状病毒肺炎传播规律 被引量:14

Prediction of COVID-19 transmission law by combining Logistic and SEIR model
下载PDF
导出
摘要 研究新型冠状病毒肺炎(COVID-19)传播方式规律及趋势有助于有效遏制其蔓延.介绍了一些常用的传染病预测模型,提出了Logistic_SEIR模型,既克服了Logistic模型不能预测现有确诊人数的缺点又克服了SEIR模型调参太多的缺点,并通过实验证明了所提出模型的实现和预测的优越性.同时进一步研究了Logistic_SEIR模型需要调试的参数取不同的初始值对预测结果的影响,并通过加权误差来量化分析预测效果.最后指出未来进一步的研究方向. To study the law and trend of coronavirus disease 2019(COVID-19)transmission mode is helpful for effectively curbing its spread.In this article,we first introduce some commonly used prediction models of infectious diseases,and then introduce the Logistic_SEIR model.This model not only overcomes shortcomings of the Logistic model that cannot predict the number of confirmed patients,but also overcomes those of the SEIR model in which plenty of parameters exist.In experiments,we prove the superiority of the realization and prediction of the model proposed in our study.At the same time,we further study the influence of different initial values of the parameters that need to be debugged in the Logistic_SEIR model on the prediction results,and quantifies the prediction effect through the weighted error.Finally,in the summary,we point out the future research directions.
作者 冯苗胜 王连生 林文水 FENG Miaosheng;WANG Liansheng;LIN Wenshui(School of Informatics,Xiamen University,Xiamen 361005,China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第6期1041-1046,共6页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(61671399) 中央高校基本业务费专项(20720190012)。
关键词 新型冠状病毒肺炎 LOGISTIC模型 SEIR模型 COVID-19 Logistic model SEIR model
  • 相关文献

参考文献8

二级参考文献24

  • 1黄德生,关鹏,周宝森.SIR模型对北京市SARS疫情流行规律的拟合研究[J].疾病控制杂志,2004,8(5):398-401. 被引量:12
  • 2徐恭贤,冯恩民,王宗涛,谭欣欣,修志龙.SARS流行病的SEIR动力学模型及其参数辨识[J].黑龙江大学自然科学学报,2005,22(4):459-462. 被引量:18
  • 3李光正,史定华.复杂网络上SIRS类疾病传播行为分析[J].自然科学进展,2006,16(4):508-512. 被引量:45
  • 4JohnsonRA WichernDW.实用多元统计分析[M].北京:清华大学出版社,2001..
  • 5Donnelly C A,Chanl A C,Leung G M,et al.Epidemiological Determinants of Spread of Causal Agent of Severe Acute Respiratory Syndrome in Hong Kong.Published Online May 7,2003,http://image.thelancet.com/extras/03art4453web.pdf.
  • 6Lipsitch M,Cohen T,Cooper B,et al.Transmission Dynamics and Control of Severe Acute Respiratory Syndrom[J].www.sciencexpress.org/23 May 2003/Page 1/10.1126/science.1086616,2003.
  • 7Riley S,Fraser C,Donnelly C A,et al.Transmission Dynamics of the Etiological Agent of SARS in Hong Kong:Impact ofPublic Health Interventions[J].www.sciencexpress.org/23 May 2003/Page 4/10.1126/science.1086478.
  • 8Dye C,Gay N.Modeling the SARS Epidemic[J].www.sciencexpress.org/23 May 2003/Page 1/10.1126/science.1086925.
  • 9Gimblett R,Roberts C,Daniel T,et al.An Intelligent Agent Based Model for Simulating and Evaluating River Trip Scenarios Along the Colorado River in Grand Canyon National Park[A].Gimblett H R.Integrating GIS and Agent Based Modeling Techniques for Understanding Social and Ecological Processes[M].Oxford Press,2000.
  • 10Parker D C,Manson S M,Janssen M A,et al.Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change:A Review[J].Annals of the Association of American Geographers,2003,93(2):314-337.

共引文献310

同被引文献141

引证文献14

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部