期刊文献+

可自供电柔性振动监测电子器件的研究

Research on Self-powered Flexible Vibration Monitoring Electronic Devices
下载PDF
导出
摘要 研究了一种柔性振动监测电子器件的振动及输出特性。以聚甲基丙烯酸甲酯(PMMA)为衬底,聚四氟乙烯(PTEE)与聚偏氟乙烯(PVDF)为柔性薄膜制备成柔性材料,对其摩擦电效应进行了分析,结合其自身的供电特性,提出了一种双螺旋结构,应用物理模型理论分析振动频率监测的可能性,并进行了公式推导。利用电动振动筛进行振动模拟,使用示波器等实验仪器对输出电压值进行测量。结果表明,器件的固有频率为26 Hz左右,响应时间小于150 ms,能够实现检测0~26 Hz的振动频率,自身具有供电特性,最高开路电压为45 V。 Vibration and output characteristics of a flexible vibration monitoring electronic device are studied.A flexible material is prepared by using polymethyl methacrylate(PMMA)as a substrate,polytetrafluoroethylene(PTEE)and polyvinylidene fluoride(PVDF)as flexible films.The triboelectric effect is analyzed,combined with its own power supply characteristics,a double helix structure is proposed,and the possibility of vibration frequency monitoring is analyzed using physical model theory,and the formula is derived.We use electric vibrating screen for vibration simulation,and use oscilloscope and other laboratory instruments to measure the output voltage value.The experimental results show that the natural frequency of the device is about 26 Hz,and the response time is less than 150 ms.It can detect the vibration frequency with the range of 0-26 Hz.It has power supply characteristics,and the maximum open circuit voltage is 45 V.
作者 王志强 郭涛 石帅 张启威 WANG Zhiqiang;GUO Tao;SHI Shuai;ZHANG Qiwei(Key Laboratory for Electronic Testing Science and Technology of MOE,North University of China,Taiyuan 030051,China)
出处 《实验室研究与探索》 CAS 北大核心 2020年第11期1-4,34,共5页 Research and Exploration In Laboratory
基金 国家自然科学基金项目(51975541)。
关键词 摩擦 振动 自供电设备 柔性 频率检测 friction vibration self-powered devices flexibility frequency detection
  • 相关文献

参考文献5

二级参考文献35

  • 1张庆新,王凤翔,李文君,赵树国.NiMnGa合金磁控形状记忆效应及外特性[J].稀有金属材料与工程,2005,34(8):1263-1266. 被引量:15
  • 2Fengxiang WANG Wenjun LI Qingxin ZHANG Chenxi LI Xinjie WU.Experimental Study on Characteristics of NiMnGa Magnetically Controlled Shape Memory Alloy[J].Journal of Materials Science & Technology,2006,22(1):55-58. 被引量:8
  • 3ELWENSPOEK M, WIEGERINK R. Mechanical microsensors[M].Berlin:Springer, 2001:245-257.
  • 4ESASHI M. Resonant sensors by silicon micromachining[C]// Proceedings of the Annual IEEE International Frequency Control Symposium. 1996: 609-614.
  • 5WELHAM C J, GARDNER J W, GREENWOOD J. A laterally driven micromachined resonant pressure sensor [J].Sensors and Actuators A, 1996, 52: 86-91.
  • 6GREENWOOD J C, SATCHELL D W. Miniature silicon resonant pressure sensor [J]. IEEE Proceedings, Part D: Control Theory and Applications, 1988, 135(5): 369-372.
  • 7HENRY M P, CLARKE D W, ARCHER N, et al. A selfvalidating digital Coriolis mass-flow meter: an overview [J].Control Engineering Practice, 2000(8) : 487-506.
  • 8BAE S Y, HAYWORTH K J, YEE K Y, et al. High performance MEMS Micro-Gyroscope[C]. Proc. SPIE, 2002, 4755:316-324.
  • 9SHARMA A, ZAMAN M F, ZUCHER M, etal. A 0. HR bias drift electronically matched tuning fork microgyroscope [C]. IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008, MEMS 2008, Tucson, AZ, USA, January, 2008:6-9.
  • 10XIA D ZH, SHENG X, WANG SH R. A digital pro- totype miniature silicon microgyroscope [C]. Proceed- ings of the 2010 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEWS), Xiamen, China,201:429-432.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部