期刊文献+

基于增强AlexNet的音乐流派识别研究 被引量:4

Music genre recognition research based on enhanced AlexNet
下载PDF
导出
摘要 针对机器学习模型对音乐流派特征识别能力较弱的问题,提出了一种基于深度卷积神经网络的音乐流派识别(DCNN-MGR)模型。该模型首先通过快速傅里叶变换提取音频信息,生成可以输入DCNN的频谱并切割生成频谱切片。然后通过融合带泄露整流(Leaky ReLU)函数、双曲正切(Tanh)函数和Softplus分类器对AlexNet进行增强。其次将生成的频谱切片输入增强的AlexNet进行多批次的训练与验证,提取并学习音乐特征,得到可以有效分辨音乐特征的网络模型。最后使用输出模型进行音乐流派识别测试。实验结果表明,增强的AlexNet在音乐特征识别准确率和网络收敛效果上明显优于AlexNet及其他常用的DCNN、DCNN-MGR模型在音乐流派识别准确率上比其他机器学习模型提升了4%~20%。 To solve the problem that machine learning model has weak ability to identify music genre features,a music genre recognition model based on deep convolutional neural network(DCNN-MGR)is proposed in this paper.At first,the model extracts audio information through Fast Fourier Transformation,generating spectrums that can be input to the DCNN and slicing the generated spectrums.Then AlexNet is enhanced by fusion of Leaky ReLU function,Tanh function and Softplus classifier.The generated spectrum slices are input into the enhanced AlexNet for multi-batch training and verification.Music features are extracted and learned,and a network model that can effectively distinguish music features is obtained.At last,the output model is applied to music genre recognition and test.The experimental results show that the enhanced AlexNet is superior to AlexNet and other commonly used DCNN in terms of accuracy of music feature recognition and network convergence effect.The DCNN-MGR model is 4%~20%higher than other machine learning models in music genre recognition accuracy.
作者 刘万军 孟仁杰 曲海成 刘腊梅 LIU Wanjun;MENG Renjie;QU Haicheng;LIU Lamei(College of Software,Liaoning Technical University,Huludao 125105,China)
出处 《智能系统学报》 CSCD 北大核心 2020年第4期750-757,共8页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金青年基金项目(41701479).
关键词 音乐流派识别 深度卷积神经网络 机器学习 深度学习 AlexNet 音频特征提取 音乐特征识别 music genres recognition deep convolutional neural network machine learning deep learning AlexNet audio feature extraction
  • 相关文献

参考文献14

二级参考文献118

  • 1余棉水,黎绍发.基于边缘与SVM的车牌自动定位与提取[J].计算机应用研究,2004,21(10):131-133. 被引量:8
  • 2SHEN Yan,XIE Mei-ping.Ship motion extreme short time prediction of ship pitch based on diagonal recurrent neural network[J].Journal of Marine Science and Application,2005,4(2):56-60. 被引量:3
  • 3王守觉,曹文明.半导体神经计算机的硬件实现及其在连续语音识别中的应用[J].电子学报,2006,34(2):267-271. 被引量:3
  • 4Wei Dachuan.An improved feature extraction algorithm of humming music[C]//2011 International Conference on Mechanical,and Electrical Engineering,2011:2500-2503.
  • 5Foucard R,Essid S,Richard G,et al.Exploring new features for music classification[C]//2013 14th International Workshop on Image Analysis for Multimedia Interactive Services,2013:1-4.
  • 6Bhat A S,Amith V S,Prasad N S,et al.An efficient classification algorithm for music mood detection in western and hindi music using audio feature extraction[C]//IEEE2014 Fifth International Conference on Signal and Image Processing(ICSIP),2014:359-364.
  • 7Gonzalez-Abril L,Angulo C,Velasco F,et al.A note on the bias in SVMs for multiclassification[J].IEEE Transactions on Neural Networks,2008,19(4):723-725.
  • 8Simon H A,Lea G.Problem solving and rule education:a unified view knowledge and organization[J].Knowledge and Cognition,1974,15(2):63-73.
  • 9Vlachos A.Active learning with support vector machines[D].School of Informatics,University of Edinburgh,2004.
  • 10Seung H S,Opper M,Sompolinsky H.Query by committee[C]//Proceedings of the 15th Annual ACM Workshop on Computational Learning Theory,California,1992:287-294.

共引文献715

同被引文献46

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部