期刊文献+

广义bent函数和虚Abel域的理想类群 被引量:2

下载PDF
导出
摘要 利用虚Abel域中素理想分解特性和理想类群的Galois模结构,证明了广义bent函数不存在性的一批新结果。
出处 《自然科学进展》 北大核心 2002年第10期1080-1082,共3页
基金 国家重点基础研究发展规划项目(批准号:G1999075101) 信息安全国家重点实验室研究项目
  • 相关文献

参考文献7

  • 1[1]Rothaus O S.On bent functions.J of Comb Theory(A),1976,20:300
  • 2[2]Kumar P V,et al.Generalized bent functions and their properties.J of Comb Theory(A),1985,40:90
  • 3[3]Pei D.Y.On non-existence of generalized bent functions.LN in Pure and Applied Math,1993,141:165
  • 4[4]Ikeda M.A remark on the non-existence of generalized bent func-tions.Number Theory and Its Applications,1996:109;LN in Pure and Applied Math,204,1999
  • 5[5]Akyildiz E,et al.A note of generalized bent functions.J of Pure and Applied Alg,1996,106:1
  • 6[6]Feng Keqin.Generalized bent functions and class group of imaginary quadratic fields.Science in China,Ser A,2001,44(5):562
  • 7[7]Moree P.On primes in arithmetic progression having a prescribed primitive root.J of Number Theory,1999,78:85

同被引文献17

  • 1柯品惠,常祖领,温巧燕.关于GF(q)上的完全非线性函数和广义Bent函数[J].北京邮电大学学报,2006,29(3):110-113. 被引量:3
  • 2Rothaus O S.On“Bent”Functions[J].Journal of Combinatorial Theory,Series A,1976,20(3):300-305.
  • 3Kumar P V,Scholtz R A,Welc L R.Generalized Bent Functions and Their Properties[J].Journal of Combinatorial Theory,Series A,1985,40(1):90-107.
  • 4Nyberg K.Constructions of Bent Functions and Difference Sets[C]//Proceedings of EUROCRYPT’90.Berlin,Germany:Springer-Verlag,1990:151-160.
  • 5Carlet C.Two New Classes of Bent Functions[C]//Proceedings of EUROCRYPT’93.Berlin,Germany:Springer-Verlag,1994:77-101.
  • 6Singh D,Bhaintwal M,Singh B K.Some Results on q-ary Bent Functions[J].International Journal of Computer Mathematics,2013,90(9):1761-1773.
  • 7Sarkar P,Maitra S.Cross-correlation Analysis of Cryptographically Useful Boolean Functions and Sboxes[J].Theory Computer Systems,2002,35(1):39-57.
  • 8Zhou Yu,Xie Min,Xiao Guozhen.On the Global Avalanche Characteristics Between Two Boolean Functions and the Higher Order Nonlinearity[J].Information Science,2010,180(2):256-265.
  • 9孙光洪,武传坤.级联函数的密码学性质[J].电子学报,2009,37(4):884-888. 被引量:12
  • 10申艳光,刘永红,江涛.n元Bent函数的级联构造[J].计算机工程,2011,37(4):125-127. 被引量:3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部