期刊文献+

基于广义回归神经网络的有源配电网网供负荷预测方法 被引量:11

Load Forecasting Method of Active Distribution Network Based on Generalized Regression Neural Network
下载PDF
导出
摘要 随着大量分布式电源(DG)接入配电网和用户终端再电气化程度的提高,提出了一种基于广义回归神经网络(GRNN)的有源配电网网供负荷预测方法。首先,对含DG与电采暖负荷的配电网网供负荷特性进行了分析;其次,基于广义回归神经网络,建立了有源配电网网供负荷预测的模型;再次,以该地区近几年的国民生产总值、人口、电力消费以及网供负荷峰值等经济数据作为模型的输入,得到了该地区在目标年配电网网供负荷的预测结果;最后,分别与采用前馈反向传播神经网络(FFBNN)以及级联正反向传播神经网络(CFBNN)得到的负荷预测结果进行了对比,验证了所提方法具有更高的预测准确性。 With a large number of distributed generation(DG)access to the distribution network and the increasing re-electrification degree of user terminal re electrification,a generalized regression neural network(GRNN)based load forecasting method for active distribution network substation network is proposed.Firstly,the load characteristics of substation distribution network including DG and electric heating load are analyzed.Secondly,based on the research of generalized regression neural network,the model of load forecasting for substation network of active distribution network is established;then,the economic data of GDP,population,power consumption and peak load of power supply in recent years in this area,are taken as the input of the model,and the target year of the region is obtained.Finally,the load forecasting results obtained by using the feedforward back propagation neural network(ffbnn)and cascaded forward and backward propagation neural network(cfbnn)are compared respectively,and the results are verified The method proposed in this paper has higher prediction accuracy.
作者 仝新宇 张宇泽 张长生 杨乔川 TONG Xinyu;ZHANG Yuze;ZHANG Changsheng;YANG Qiaochuan(State Grid Tianjin Electric Power Company Chengxi Power Supply Company,Tianjin 300190,China;Key Laboratory of Smart Grid(Tianjin University),Ministry of Education,Tianjin 300072,China)
出处 《供用电》 2020年第12期40-45,共6页 Distribution & Utilization
关键词 网供负荷预测 有源配电网 分布式电源 电采暖负荷 广义回归神经网络 network supply load forecasting active distribution network distributed generation electric heating load generalized regression neural network
  • 相关文献

参考文献15

二级参考文献157

共引文献422

同被引文献167

引证文献11

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部