摘要
Aiming at the problems of low prediction accuracy and weak generalization ability of current reliability prediction models,this paper proposes a hybrid multi-layer heterogeneous particle swarm optimization algorithm(HMHPSO)that can simultaneously optimize the structure and parameters of the GRU neural network.It first introduced a multi-layer heteromass particle swarm optimization(MHPSO)algorithm,which sets the population topology as a hierarchical structure and introduces the concept of attractors,so as to improve the update formula of particle speed,and enhance the information interaction ability between particles,increase the diversity of the groups,thereby improving the optimization ability of the algorithm.Then the HMHPSO used the quantum particle swarm optimization(QPSO)algorithm to determine the structure of the GRU,that is,the number of hidden nodes.Experimental results show that the algorithm can generate GRU neural networks with high generalization performance and low architecture complexity,and has better prediction accuracy in software reliability prediction.
出处
《国际计算机前沿大会会议论文集》
2020年第2期369-383,共15页
International Conference of Pioneering Computer Scientists, Engineers and Educators(ICPCSEE)