摘要
在大数据的时代背景下,人工智能技术不断发展和普及,机器学习技术越来越多地被运用到医疗领域中。该文基于TensorFlow框架构建深度神经网络算法诊断糖尿病,并与KNN模型、逻辑回归模型、高斯贝叶斯模型、SVM模型、随机森林模型、AdaBoost模型和XGBoost模型七种传统机器学习模型从模型准确率、精确率、召回率、AUC值和F1-Score五项指标进行对比分析,发现深度神经网络算法所构建的预测模型准确率最高,更适合于糖尿病预测问题的分析研究。
In the context of the era of big data,artificial intelligence technology continues to develop and spread,and machine learning technology is increasingly being used in the medical field.This paper builds a deep neural network algorithm for diagnosing diabetes based on the TensorFlow framework,and works with KNN models,logistic regression models,Gaussian Bayesian models,SVM models,random forest models,AdaBoost models,and XGBoost models.Comparative analysis of five indicators:accuracy rate,recall rate,AUC value and F1-Score,found that the prediction model constructed by the deep neural network algorithm has the highest accuracy rate,which is more suitable for the analysis and research of diabetes prediction problems.
作者
宋玉平
杨默艺
杜文杰
SONG Yu-ping;YANG Mo-yi;DU Wen-jie(Shanghai Normal University,Shanghai 200234,China)
出处
《电脑知识与技术》
2020年第32期18-20,共3页
Computer Knowledge and Technology
基金
上海师范大学城市社会学创新团队(310-AC7031-20-004123)。