期刊文献+

几种滤波算法的分析与比较 被引量:4

Analysis and Comparison of Several Filtering Algorithms
下载PDF
导出
摘要 滤波算法常用来解决对系统状态估计的问题,主要有卡尔曼滤波、粒子滤波以及在此基础上改进的扩展卡尔曼,无迹卡尔曼,无迹粒子滤波算法等。对于线性高斯系统模型,卡尔曼滤波有着极强的处理能力,因此得到了广泛的应用。粒子滤波无须对系统状态做线性高斯假设,其应用范围大于卡尔曼滤波,但时间的消耗要远远大于前者。在介绍了常见滤波算法的原理与应用后,通过仿真实验对比了上述几种常见滤波方法的跟踪效果。实验表明,上述算法在非线性高斯模型下均有较好的准确性与较低的误差。 Filtering is used to estimate the system state,including Kalman filter(KF),particle filter and extended kalman(EK),unscented kalman(UK),unscented particle filter algorithm.For linear Gaussian system,Kalman filter has a strong processing ability,so it has been widely used in the field.Linear and Gaussian assumption is not necessary in particle filter contrast to KF,the application range is larger than the latter and the time consumption is stronger than the latter.introducing the principle and application of filtering algorithms,the tracking effect are compared through simulation experiments.Experimental resultsshows that improved algorithm have better accuracy and lower error in the model of nonlinear gaussian.
作者 陈菘 卢敏 CHEN Song;LU Min(School of Science,Jiangxi University of Science and Technology,Ganzhou 341000,China)
机构地区 江西理工大学
出处 《电脑知识与技术》 2020年第32期23-25,共3页 Computer Knowledge and Technology
基金 国家自然科学基金资助项目(No.11704163) 江西省教育厅重点研究项目(No.GJJ160594)。
关键词 卡尔曼滤波 扩展卡尔曼滤波 无迹卡尔曼滤波 粒子滤波 高斯噪声 kalman filter extended KF unscented KF particle filter gaussian noise
  • 相关文献

参考文献6

二级参考文献38

  • 1杨小军,潘泉,张洪才.基于粒子滤波和似然比的联合检测与跟踪[J].控制与决策,2005,20(7):837-840. 被引量:14
  • 2胡洪涛,敬忠良,胡士强.基于辅助粒子滤波的红外小目标检测前跟踪算法[J].控制与决策,2005,20(11):1208-1211. 被引量:25
  • 3李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 4Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear/non-Gaussian baysian state estimation[J].IEE Proceedings on Radar and Signal Processing, 1993,140(2 ) : 107-113.
  • 5Djuric P M,Kotecba J H,Zhang Jian-qiu,et al.Particle filtering[J]. IEEE Signal Processing Magazine,2003: 19-38.
  • 6Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for on-line nonlinear/non-Gaussian Baysian tracking[J].IEEE Transaction on Signal Processing, 2002,50( 2 ) : 174-188.
  • 7Carpenter J,Clifford P,Fearnhead P.Improved particle filter for nonlinear problems[J].IEE Proc Radar,Sonar Navig, 1999,146( 1): 2-7.
  • 8Doucet A,Godsill S,Andrieu D.On sequential Monte Carlo sampling methods for Bayesian fihering[J].Statistics and Computing, 2000:197-208.
  • 9Salmond D J,Bircht H.A particle filter for track-before-detect[J]. Proceedings of the American Control Confernce Arlington,2001: 3755-3760.
  • 10Ristic B,Arulampalam S,Gordon N.Beyond the Kalman filter: practice filters for tracking applications [M].Boston:Artech House Publishers, 2004.

共引文献305

同被引文献30

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部