期刊文献+

Extreme vocabulary learning

原文传递
导出
摘要 Regarding extreme value theory,the unseen novelclasses in the openset recognition can be seen as the extremevalues of training classes.Following this idea,we introducethe margin and coverage distribution to model the trainingclasses.A novel visual-semantic embedding framework-extreme vocabulary learning(EVoL)is proposed;the EVoL embeds the visual features into semantic space in a probabilisticway.Notably,we adopt the vast open vocabulary in the semantic space to help further constraint the margin and coverage of training classes.The learned embedding can directlybe used to solve supervised learning,zero-shot learning,andopen set recognition simultaneously.Experiments on twobenchmark datasets demonstrate the effectiveness of the proposed framework against conventional ways.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2020年第6期5-15,共11页 中国计算机科学前沿(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部