期刊文献+

基于核主成分和灰狼优化算法的刀具磨损状态识别 被引量:20

Tool wear condition recognition based on kernel principal component and grey wolf optimizer algorithm
下载PDF
导出
摘要 为了提高刀具磨损状态实时监控的准确性和泛化能力,提出一种基于切削力特征间接识别刀具磨损状态的方法。该方法建立了切削力信号与刀具磨损的非线性映射关系,并进行刀具生命周期内的性能试验,采集切削力信号,提取信号的时域、频域和小波域特征,采用核主成分分析法进行数据降维,利用灰狼优化的支持向量机得到刀具磨损的分类等级。最后与其他文献中的方法进行对比,结果表明该模型能够更准确地反映刀具的磨损状态,具有较高的泛化能力。 To improve the accuracy and generalization ability of real-time monitoring of tool wear state,a method based on cutting force characteristics to indirectly identify tool wear state was proposed,which established a non-linear mapping relationship between cutting force signal and tool wear.Tool performance test in tool life cycle was operated to collect cutting force signals,and the time domain,frequency domain and wavelet domain features of signals were extracted.The dimensionality reduction features of the data with kernel principal component analysis were evaluated,and the classification grade of tool wear was obtained by using the support vector machine classifier optimized of grey wolf optimization algorithm.Compared with other methods in the literatures,the experimental results showed that the proposed model could reflect the tool wear state more accurately and had higher generalization ability.
作者 廖小平 黎宇嘉 陈超逸 张振坤 鲁娟 马俊燕 薛斌 LIAO Xiaoping;LI Yujia;CHEN Chaoyi;ZHANG Zhenkun;LU Juan;MA Junyan;XUE Bin(College of Mechanical Engineering, Guangxi University, Nanning 530004, China;Guangxi Engineering Technology Research Center of Marine Digital Design and Advanced Manufacturing( Beibu Gulf University), Qinzhou 535011, China;Guangxi Key Laboratory of Manufacturing Systems and Advanced Manufacturing Technology, Guangxi University, Nanning 530004, China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2020年第11期3031-3039,共9页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(51665005) 广西研究生教育创新计划资助项目(YCBZ2017015) 广西高校临海机械装备设计制造及控制重点实验室资助项目(GXLH2016ZD-06) 广西制造系统与先进制造技术重点实验室(开放基金或基金)资助项目(17-259-05S008) 广西自然科学基金资助项目(2016GXNSFBA380214)。
关键词 刀具状态识别 核主成分分析 切削力特征 支持向量机 灰狼优化算法 tool wear state recognition kernel principal component analysis cutting force characteristics support vector machine grey wolf optimizer algorithm
  • 相关文献

参考文献6

二级参考文献37

  • 1邓晓刚,田学民.一种基于KPCA的非线性故障诊断方法[J].山东大学学报(工学版),2005,35(3):103-106. 被引量:27
  • 2魏海坤.神经网络结构设计的理论与方法[M].北京:国防工业出版社,2004,40一60.
  • 3张良均,曹晶,蒋世忠.神经网络使用教程[M].北京:机械工业出版社,2008:37-58.
  • 4KPISHANA P. Applications of multivariate analysis tech- niques for fault dectection, diagnosis and isolation[D]. Singa- pore:National University of Singapore, 2011.
  • 5ZHANG Y, MA C. Fault diagnosis of nonlinear processes u- sing multiscale KPCA and multiscale KPLS[J]. Chemical Engi- neering Science, 2011,66(1) : 64-72.
  • 6PRINCIPE C. Information theoretic learning: renyi's entropy and kernel perspectives[-M3. New York, N. Y. , USA.-Springer- Verlag, 2010 : 47-88.
  • 7CHOI S W, LEE C, LEE J M, et al. Fault detection and identifi- cation of nonlinear processes based on kernel PCA:J]. Chemomet- rics and Intelligent Laboratory Systems, 2005,75 (1) : 55-67.
  • 8ZVOKELJ M, ZUPAN S, PREBIL I. Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method[J]. Mechanical Systems and Signal Processing,2011,25(7) :2631-2653.
  • 9SIMOGLOU A, MARTIN E B, MORRIS A J. Statistical per- formance monitoring of dynamic multivariate processes using state space modeling[J]. Computers :y. Chemical Engineering, 2002,26(6) :909-920.
  • 10DOWNS J J, VOGEL E F. A plant-wide industrial process control problem FJ]. Computers : Chemical Engineering, 1993,17(3) :245-255.

共引文献110

同被引文献191

引证文献20

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部