期刊文献+

三维不可压Navier-Stokes方程弱解正则准则 被引量:1

Regularity Criterion for Weak Solutions of 3D Incompressible Navier-Stokes Equations
下载PDF
导出
摘要 考虑在三维情况下不可压的Navier-Stokes方程弱解的正则性,在建立弱解正则性准则时,主要工作是扩大弱解所满足的函数积分空间.在此使用了Hölder不等式、Young不等式及Sobolev嵌入技术等,扩大了弱解一阶偏导数∂3u所属的积分空间,当∂3u∈L^p(0,T;Lq(R^3))且2/p+3/q=46/25+3/25q,31/8≤q≤∞时,或者当∂3u∈L^p(0,T;Lq(R^3))且2/p+3/q=22/13+3/13q,19/8≤q≤∞时,三维不可压Navier-Stokes方程弱解在(0,T]上是正则的. This paper considers the regularity of weak solutions for incompressible Navier-Stokes equations in 3D cases.When establishing a weak solution rule of thumb,The main job is to expand the function integration space that the weak solution satisfies.Here,Hölder inequalities,Yuong inequalities,etc.and Sobolev embedding techniques are used to expand the integral space to which the weak solution first-order partial derivative3u belongs.When∂3u∈L^p(0,T;Lq(R^3))and 2/p+3/q=46/25+3/25q,31/8≤q≤∞,or when∂3u∈L^p(0,T;Lq(R^3))and 2/p+3/q=22/13+3/13q,19/8≤q≤∞,The weak solution of three-dimensional incompressible of the Navier-Stokes equation is regular on(0,T].
作者 李天理 董柏青 LI Tian-li;DONG Bo-qing(Basic Teaching Department, Anhui Vocational and Technical College, Hefei 230011, China;School of Mathematical Sciences, Anhui University, Hefei 230039, China)
出处 《大学数学》 2020年第6期1-6,共6页 College Mathematics
基金 安徽省省级自然科学基金(KJ2018B0002)。
关键词 NAVIER-STOKES方程 弱解正则性 Sobolev嵌入不等式 YOUNG不等式 Navier-Stokes equation weak solution regularity Sobolev embedding inequality Young inequality
  • 相关文献

参考文献2

二级参考文献1

共引文献39

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部