期刊文献+

智能规划分解的发展与应用研究

Research on Development and Application of AI Planning Decomposition
下载PDF
导出
摘要 智能规划是人工智能的一个重要分支。规划分解是智能规划研究的一个不可或缺的组成部分,为提升规划速度,缩小规划扩张规模起到了关键的作用。对智能规划中分解算法进行了广泛而深入的研究,较为全面地介绍了规划分解的发展历程。阐述和分析了规划分解问题的一般形式,并以多种角度对规划分解进行了分类,着重介绍了规划分解的一些关键技术和热门应用。从传统方法、抽象层次、约束可满足、子目标排序等方面分别介绍了所采用分解方法的主要内容和优势。应用领域包括规划算法的改进、多智能体系统、软件测试用例生成、大型马尔可夫决策过程的求解等。对现有规划分解存在的问题和不足进行了归纳总结,并分析了未来的发展方向。 AI(artificial intelligence)planning is an important branch of artificial intelligence.Planning decomposition is an important topic of intelligent planning research,which plays a key role in improving planning speed and reducing the scale of planning expansion.The decomposition algorithm in intelligent planning is studied extensively and deeply,and the development history is introduced comprehensively.This paper expounds and analyzes the general forms of planning decomposition,and classifies the planning decomposition from various situations,in which key methods and popular applications of planning decomposition are mainly introduced.The main contents and advantages of the decomposition method are introduced from the aspects of traditional methods,abstraction levels,constraint satisfaction problems,sub-objective ordering,etc.Application areas include improvements in planning algorithms,multi-agent systems,software test-case generation,large Markov decision processes,etc.This paper summarizes the problems and deficiencies of the existing planning decomposition,and analyzes the future direction.
作者 李丽 王大勇 LI Li;WANG Dayong(College of Innovation and Entrepreneurship,Liaoning University,Shenyang 110036,China)
出处 《计算机科学与探索》 CSCD 北大核心 2020年第12期1995-2003,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金,No.61472169 辽宁省教育厅科学研究经费项目,No.LQN201912 辽宁大学青年科研基金项目,No.LDQN2019018。
关键词 人工智能(AI) 规划分解 智能规划 复杂规划问题 规划器 artificial intelligence(AI) planning decomposition AI planning complex planning problem planner
  • 相关文献

参考文献4

二级参考文献37

  • 1吴康恒,姜云飞.基于模型检测的领域约束规划[J].软件学报,2004,15(11):1629-1640. 被引量:17
  • 2谷文祥,徐丽,张新梅.图规划框架下智能规划的研究与发展[J].世界科技研究与发展,2005,27(4):21-28. 被引量:2
  • 3凌应标,吴向军,姜云飞.基于子句权重学习的求解SAT问题的遗传算法[J].计算机学报,2005,28(9):1476-1482. 被引量:15
  • 4陈蔼祥,姜云飞,张学农,刘国英.GP——基于规划图的遗传规划算法[J].计算机学报,2007,30(1):153-160. 被引量:9
  • 5吴向军,姜云飞,凌应标.基于STRIPS的领域知识提取策略[J].软件学报,2007,18(3):490-504. 被引量:20
  • 6GUPTA M,BASTANI F,KHAN L,et al.Rapid goal-oriented automated software testing using mea-graph planning[J].Software Quality Journal.2007,15(3):241-263.
  • 7KOEHLER J.Handling of conditional effects and negative goals in IPP[R].Technical Report:report00128.Freiburg:Albert-Ludwigs University,1999.http://portal.acm.org/citation.cfm?id=896370.
  • 8Carbonell J G,Gil Y.Learning by experimentation:The operator refinement method//Kodratoff Y,Michalski R S eds.Proceedings of the Machine Learning:An Artificial Intelligence Approach,Kaufmann,San Mateo,CA,1990,Ⅲ:191-213
  • 9Gil Y.Learning by experimentation:Incremental refinement of incomplete planning domains//Proceedings of the 11th International Conference on Machine Learning.Rutgers University,New Brunswick,NJ,USA,1994:87-95
  • 10Wang X.Learning planning operators by observation and practice//Proceedings of the 2nd International Conference on Artificial Intelligence Planning Systems.University of Chicago,Chicago,Illinois,1994:335-340

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部