期刊文献+

基于大数据的城市空气质量时空预测模型 被引量:11

Research on Spatial-temporal Forecasting Model for Urban Air Quality Monitoring Based on Large Data Analysis
下载PDF
导出
摘要 针对常用的基于数据驱动的空气质量预测方法只考虑当地站点时序特性的缺陷问题,提出一种时空特性的空气质量预测算法,通过长短期记忆网络(Long Short-term Memory,LSTM)构成SequencetoSequence范式处理时间序列的变长输入与输出,获取本地PM2.5时间序列规律;通过卷积神经网络(CNN)获取站点间的空间相关性及特征的进一步抽象,结合两类网络产生从结构上反映时间与空间相关性的预测结果。对比实验的结果表明,LSTM-CNN混合模型在公开数据集上,与神经网络、回归树以及简单的LSTM系列模型相比,取得了更好的预测效果,证实所提算法的优越性能。 Commonly used data-driven air quality prediction method only considers the temporal features of the local station.This paper proposes an air quality prediction algorithm with spatial and temporal characteristics.The Sequence to Sequence paradigm is used to obtain the temporal feature of the local PM2.5.It is composed of LSTM,and it can handle variable-length input and output of time series.Convolutional neural network(CNN)is used to obtain the spatial correlation between stations and the high-dimensional representation of features.The hybrid network is a combination of two types of networks.Its prediction essentially reflects the temporal and spatial correlation.A comparative experiment is conducted on public datasets.Compared with neural networks,regression trees,and simple LSTM series models,the LSTM-CNN hybrid model achieves better prediction results.
作者 杨张婧 阎威武 王国良 车继勇 YANG Zhang-jing;YAN Wei-wu;WANG Guo-liang;CHE Ji-yong(School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;Shanghai Lanbin Petrochemical Equipment Co.,Ltd,Shanghai,201518,China)
出处 《控制工程》 CSCD 北大核心 2020年第11期1859-1866,共8页 Control Engineering of China
基金 国家自然科学基金项目(60974119)。
关键词 空气质量预测 LSTM CNN 混合模型 Air quality prediction Long Short-term Memory(LSTM) convolutional neural network(CNN) mixed model
  • 相关文献

参考文献1

二级参考文献11

  • 1王海起,王劲峰.一种基于空间邻接关系的k-means聚类改进算法[J].计算机工程,2006,32(21):50-51. 被引量:15
  • 2韩卫国,王劲峰,高一鸽,胡建军.区域交通流的时空预测与分析[J].公路交通科技,2007,24(6):92-96. 被引量:17
  • 3PARK M S, HEO T Y. Seasonal spatial-temporal model for rainfall data of South Korea [ J ]. Journal of Applied Sciences Research, 2009,5(5 ) :565-572.
  • 4VALENTINI P, IPPOLITI L, FONTANELLA L. Modeling US house prices by spatial dynamic structural equation models[ J]. Annals of Applied Statistics,2013,7(2) :763-798.
  • 5PFEIFER P E, DEUTRCH S J. A three-stage iterative procedure for space-time modeling Phillip [ J ]. Technometrics, 1980,22 ( 1 ) : 35- 47.
  • 6KAMARIANAKIS Y, PRASTACOS P. Space-time modeling of traffic flow[ J ]. Computers & Geosciences ,2005,31 (2) : 119-133.
  • 7GRASSBERGER P, PROCACCIA I. Measuring the strangess of strange attractors [ J ]. Physica D, 1983,9 ( 1 - 2 ) : 189 - 208.
  • 8HALIM S, BISONO I N, SUNYOTO D, et al. Parameter estimation of space-time model using genetic algorithm[ C ]//Proe of IEEE Inter- national Conference on Industrial Engineering and Engineering Man- agement. [ S. 1. ] : IEEE Press,2009 : 1371 - 1375.
  • 9薛存金,谢炯.时空数据模型的研究现状与展望[J].地理与地理信息科学,2010,26(1):1-6. 被引量:17
  • 10刘大有,陈慧灵,齐红,杨博.时空数据挖掘研究进展[J].计算机研究与发展,2013,50(2):225-239. 被引量:125

共引文献5

同被引文献115

引证文献11

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部