期刊文献+

基于ViBe模型的VOCs泄漏自动识别算法 被引量:1

VOCs Leakage Automatic Identification Algorithm Based on ViBe Model
下载PDF
导出
摘要 挥发性有机物(Volatile Organic Compounds,VOCs)是大气污染的重要来源,也是臭氧和有机颗粒物的重要前体物质,对人体和环境都有很大的伤害。LDAR(Leak Detection and Repair)技术通过定期检修设备与管阀件等VOCs主要泄漏源,对石化行业降本减排具有重要意义。针对当下红外摄像仪检测VOCs时,完全依赖人眼辨识泄漏发生与否的缺陷,提出基于简单且运算快速的Visual Background extractor(ViBe)模型的VOCs泄漏自主辨识算法。为提高模型环境适应性,模型结合二值化和图像形态学开运算处理,以及K-means++聚类算法,实现在原视频帧中框选出泄漏位置,为人工辨识泄漏提供帮助和参考。 Volatile Organic Compounds(VOCs)are important sources of air pollution,precursor substances of ozone and organic particulates,which have great harm to human body and the environment.Leak Detection and Repair(LDAR)technology is of great significance for reducing costs and emissions in the petrochemical industry through regular overhauling main VOCs leakage sources such as equipment and pipe valves.In view of the fact that VOCs leakage,detected by current infrared camera,completely depends on human eyes to identify whether the leakage occurs or not,an autonomous identification algorithm is proposed for VOCs leakage based on the simple and fast model called Vi Be(Visual Background Extractor).The method is combined with binarization,image morphological processing,and k-means++clustering algorithm to improve environment adaptability.It achieves the goal of box selection of the leakage location in the original video,which provides some help and references for manual identification of the leakage.
作者 吴苏保 王慧锋 颜秉勇 万永菁 张烨 WU Su-bao;WANG Hui-feng;YAN Bing-yong;WAN Yong-jing;ZHANG Ye(Key Laboratory for Advanced Control and Optimization of Chemical Process,East China University of Science and Technology,Shanghai 200237,China;Shanghai Institute of Special Equipment Inspection and Technical Research,Shanghai 200062,China)
出处 《控制工程》 CSCD 北大核心 2020年第11期1970-1974,共5页 Control Engineering of China
基金 国家自然科学基金青年基金(51407078)。
关键词 LDAR VOCs泄漏 ViBe模型 K-means++ LDAR VOCs leakage ViBe model K-means++
  • 相关文献

参考文献10

二级参考文献63

共引文献167

同被引文献27

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部