期刊文献+

基于多态蚁群优化算法的认知无线电频谱分配 被引量:4

COGNITIVE RADIO SPECTRUM ALLOCATION BASED ON IMPROVED POLYMORPHIC ANT COLONY ALGORITHM
下载PDF
导出
摘要 传统基于蚁群算法的认知无线电频谱分配方案未考虑信息素分配时间因素,导致信道使用效率低,对此给出一种基于多态蚁群优化算法的认知无线电频谱分配方案。计算基于蚁群算法的转移概率,为蚁群算法中蚂蚁的下一步行动提供依据;在信息素分配过程中引入一个时间因子,使信息素的分配与蚂蚁到达节点的时间有关,生成新的信息素分配方法;对所有认知用户的信息素进行排序,并将信道分配给信息素最大的认知用户。仿真实验结果表明:该算法可以保证信息素分配的公平性且可以提高信道利用率,与AOC算法、QGA算法和CSGC算法相比,可以显著提高系统的网络效益、公平性、收敛速度和吞吐量。 The traditional cognitive radio spectrum allocation scheme based on ant colony algorithm does not take into account the time factor of pheromone allocation,which leads to the low efficiency of channel utilization.Therefore,we propose a cognitive radio spectrum allocation scheme based on polymorphic ant colony optimization algorithm.It calculated the transition probability based on ant colony algorithm,which provided the bases for the next action of ants in the ant colony algorithm.A time factor was introduced in the process of pheromone allocation,which made the allocation of pheromone related to the time when the ants arrived at the node,and generated a new pheromone allocation method.The pheromones of all cognitive users were sorted,and the channel was allocated to the cognitive users with the largest pheromone.The simulation results show that the proposed algorithm can guarantee the fairness of pheromone allocation and improve the channel utilization.Compared with AOC,QGA and CSGC,it can significantly improve the network efficiency,fairness,convergence speed and throughput of the system.
作者 孙汉卿 刘征 王桂芝 连卫民 Sun Hanqing;Liu Zheng;Wang Guizhi;Lian Weimin(College of Information Engineering,Henan University of Animal Husbandry and Economu,Zhengzhou 450044,Henan,China)
出处 《计算机应用与软件》 北大核心 2020年第12期260-265,321,共7页 Computer Applications and Software
基金 河南省科技发展计划项目(182102210599) 河南牧业经济学院科研创新团队项目(2018KYTD19)。
关键词 多态蚁群算法 认知无线电 频谱分配 时间效率 转移概率 Polymorphic ant colony algorithm Cognitive radio Spectrum allocation Time efficiency Transition probability
  • 相关文献

参考文献10

二级参考文献103

  • 1熊志辉,李思昆,陈吉华.遗传算法与蚂蚁算法动态融合的软硬件划分[J].软件学报,2005,16(4):503-512. 被引量:87
  • 2张成文,苏森,陈俊亮.基于遗传算法的QoS感知的Web服务选择[J].计算机学报,2006,29(7):1029-1037. 被引量:103
  • 3刘维.精通Matlab与C/C++混合程序设计[M].北京:北京航空航天大学出版社,2008.
  • 4黄翰,郝志峰,吴春国,秦勇.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1344-1353. 被引量:72
  • 5倪晚成,刘连臣,吴澄,刘伟.基于概念关联程度的网格服务组合方法[J].清华大学学报(自然科学版),2007,47(10):1581-1585. 被引量:5
  • 6TRAGOS E Z,ZEADALLY S,FRAGKIADAKIS A G,et al.Spectrum assignment in cognitive radio networks:a comprehensive survey[J] .IEEE Communications Surveys & Tutorials,2013,15 (3):1112.
  • 7PENG C,ZHENG H,ZHAO B Y.Utilization and fairness in spectrum assignment for opportunistic spectrum access[J] .ACM Mobile Networks and Applications,2006,11 (4):555-576.
  • 8SHIN K G.Joint spectrum allocation and power control for multihop cognitive radio networks[J] .IEEE Trans.Mobile Computing,2011,10(7):i042-1055.
  • 9ZHANG Hongshun,YAN Xiao.Advanced dynamic spectrum allocation algorithm based on potential game for cognitive radio[C] //Proc.20102nd International Symposium on Information Engineering and Electronic Commerce (IEEC).[S.l.] :IEEE Press,2010:1-3.
  • 10HUANG J,BERRY R,HONIG M L.Auction-based spectrum sharing[J] .ACM Mobile Networks and Applications (MONET),2006,11(3):405-418.

共引文献32

同被引文献37

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部