期刊文献+

杂化非本征铁电体Ca2.94Na0.06Mn2O7中异常的带隙变化

Abnormal variation of band gap in hybrid improper ferroelectricity Ca2.94Na0.06Mn2O7
下载PDF
导出
摘要 为了研究杂化非本征铁电体Ca3Mn2O7(CMO)的带隙变化,采用标准固相反应法合成了Ca3Mn2O7和Ca2.94Na0.06Mn2O7陶瓷.利用X线衍射仪、X线光电子能谱和紫外-可见光谱分别研究了材料的结构信息、元素价态和带隙.研究结果表明:在Ca2.94Na0.06Mn2O7中氧空位相对于未掺杂的Ca3Mn2O7样品明显减少,且Ca2.94Na0.06Mn2O7的光学带隙值也小于Ca3Mn2O7的带隙值.为了解释这一反常的现象,在分析Mn-O1-Mn键角和Mn/O键各向异性导致的结构对称性的基础上研究了占据带和非占据带的带宽.结果表明增强的结构对称性能够增加占据带和非占据带的带宽,从而减小Ca2.94Na0.06Mn2O7的带隙值. In order to study the changes of band gap in hybrid improper ferroelectricity Ca3Mn2O7(CMO),Ca3Mn2O7 and Ca2.94Na0.06Mn2O7 ceramics were synthesized by standard solid reaction method.The structural information,elemental valence and band gap of the materials were studied by X-ray diffractometer,X-ray photoelectron spectroscopy and UV-VIS.The results show that the oxygen vacancy in Ca2.94Na0.06Mn2O7 is significantly reduced compared with that in Ca3Mn2O7 sample.The optical band gap value of Ca2.94Na0.06Mn2O7 is also narrower than that of the Ca3Mn2O7.In order to explain this abnormal phenomenon,the bandwidth of occupied and non-occupied bands was studied by analyzing the structural symmetry change caused by Mn-O1-Mn bond angle and Mn-O bond anisotropy.The result shows that the enhanced structural symmetry can increase the bandwidth of occupied and non-occupied bands,thus reducing the band gap value of Ca2.94Na0.06Mn2O7.
作者 刘慧兰 王守宇 卢佳依 李松钖 佟保远 孙景瑞 LIU Huilan;WANG Shouyu;LU Jiayi;LI Songyang;TONG Baoyuan;SUN Jingrui(College of Physics and Materials Science,Tianjin Normal University,Tianjin 300387,China)
出处 《天津师范大学学报(自然科学版)》 CAS 北大核心 2020年第6期19-23,53,共6页 Journal of Tianjin Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11104202) 天津市研究生科研创新项目(2019YJSS135).
关键词 杂化非本征铁电体 Ca2.94Na0.06Mn2O7(CNMO) 带隙 结构对称性 hybrid improper ferroelectricity Ca2.94Na0.06Mn2O7(CNMO) band gap structural symmetry
  • 相关文献

二级参考文献43

  • 1Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719.
  • 2Neaton J B, Ederer C, Waghmare U V, Spaldin N A and Rabe K M 2005 Phys. Rev. B 71 014113.
  • 3Ederer C and Neaton J B 2005 Phys. Rev. B 71 060401(R).
  • 4Diaguez O and Ifiiguez J 2011 Phys. Rev. Lett. 107 057601.
  • 5Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55.
  • 6Xiang H J, Wei S H, Whangbo M H and Da Silva J L F 2008 Phys. Rev. Lett. 101 037209.
  • 7Malashevich A and Vanderbilt D 2009 Phys. Rev. B 80 224407.
  • 8Rovillain P, Cazayous M, Gallais Y, Measson M A, Sacuto A, Sakata H and Mochizuki M 2011 Phys. Rev. Lett. 107 027202.
  • 9Kimura T, Tomioka Y, Kuwahara H, Asamitsu A, Tamura M and Tokura Y 1996 Science 274 1698.
  • 10Benedek N A and Fennie C J 2011 Phys. Rev. Lett. 106 107204.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部