期刊文献+

一种不平衡水声目标数据的选择性集成算法 被引量:2

Selective ensemble algorithm for imbalanced underwater acoustic target data
下载PDF
导出
摘要 针对不平衡水声目标数据分类问题,本文提出了一种间隔和差异性融合的选择性集成算法。从理论上给出了单纯增加差异性无法改善泛化性的原因,融合间隔和差异性构造了选择性度量,利用选择性度量对基分类器进行选择性集成从而形成最终分类器。实测水声目标数据试验结果表明:本文算法整体性能优于AdaBoost算法和常规选择性集成算法,说明其更适合处理不平衡水声目标数据分类问题。 To solve the problem of imbalanced underwater acoustic target data classification,in this paper,we propose a margin and diversity fusion selective ensemble algorithm(MDSE algorithm).First,we provide a theoretical explanation of why the generalization could not be improved by simply increasing diversity.Second,we develop a selective measurement technique that involves margin and diversity fusion.Finally,we obtain the final classifier from a selective ensemble of base classifiers using selective measurement.Underwater acoustic target data was obtained.The experimental results showed that the MDSE algorithm performed better than the AdaBoost and common selective ensemble algorithms,which means that the MDSE algorithm is more suitable for imbalanced underwater acoustic target data classification.
作者 程玉胜 张宗堂 李海涛 刘振 CHENG Yusheng;ZHANG Zongtang;LI Haitao;LIU Zhen(Navigation and Observation Department,Navy Submarine Academy,Qingdao 266000,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第10期1553-1558,共6页 Journal of Harbin Engineering University
关键词 不平衡数据 集成学习 水声目标识别 ADABOOST算法 选择性集成算法 间隔 差异性 分类器设计 imbalanced data ensemble learning underwater acoustic target recognition AdaBoost algorithm selective ensemble algorithm margin diversity classifier design
  • 相关文献

参考文献1

二级参考文献20

  • 1H Wang, et al. Mining concept-drifting data streams using ensemble classifiers[ A ]. Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C] .New York: ACM Press,2003.226- 235.
  • 2M Scholz, R Klinkenberg. An ensemble classifier for drifting concepts[ A]. Proceedings of the Second International Work- shop on Knowledge Discovery in Data Streams [ C]. Porto, Portugal: Springer,2005.53 - 64.
  • 3Wei Fan. Systematic data selection to mine concept - drifting data streams[A]. Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C] .New York: ACM Press,2004. 128- 137.
  • 4J Z Kolter, M A Maloof. Using additive expert ensembles to cope with concept drift [ A]. Proceedings of the 22nd International Conference on Machine Learning[C]. New York: ACM Press, 2005.449 - 456.
  • 5G M Weiss, F Provost. Learning when training data are costly: the effect of class distribution on tree induction[ J]. JOUlllal of Artificial Intelligence Research, 2003, (19) : 315 - 354.
  • 6N V Chawla, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, (16) :321 - 357.
  • 7G M Weiss. Mining with rarity: a unifying framework[ J]. ACM SIGKDD Explorations, 2004,6( 1 ) :8 - 19.
  • 8C Elkan. The foundations of cost - sensitive learning[A]. Proceedings of the 17th International Joint Conference on Artificial Intelligence[C]. Seattle, Washington, USA: Morgan Kaufinann Publishers Inc, 2001. 973 - 978.
  • 9M Ciraco, M Rogalewski, G Weiss. Improving classifier utility by altering the misclassification cost ratio[A]. Proceedings of the 1st International Workshop on Utility-based Data Mining [C] .New York: ACM Press,2005.46- 52.
  • 10C X Ling, V S Sheng. Cost-sensitive learning and the class imbalance problem [ A ]. Encyclopedia of Machine Learning M]. New York: Springer. 2008.

共引文献22

同被引文献21

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部