期刊文献+

水声目标分类算法性能评估 被引量:3

Performance evaluation on the algorithm of underwater acoustic target classification
下载PDF
导出
摘要 水声目标分类算法研究中使用的性能指标单一且受样本不平衡影响,其评估方法也不适于样本有限的场景。针对这些问题,本文基于水声场景需求,建立了仿真模型,并分析了性能指标与样本类分布的关系,比较了不同样本条件下各评估方法的估计误差。结果表明:PR曲线下面积具有稳定的鉴别力,均衡正确率等指标受样本类分布影响小,各评估方法在样本有限时估值差异显著。据此,本文构建性能指标体系可用于设计和评估算法,提出适应水声需求的修正均衡正确率,同时推荐采用5×2分层交叉验证的评估方法。 The single performance metric used in the algorithm for underwater acoustic target classification is affected by sample imbalance and its performance evaluation method is not suitable for scenes with a limited number of samples.To address these problems,in this study,we develop simulation models based on the requirements of the underwater acoustic scenes to analyze the relationship between the performance metrics and the class distributions of the samples.We then compare the estimation errors of the evaluation methods under different sample conditions.The results show that the area under the precision-recall curve has stable discriminability,the distribution of samples has little influence on the balanced accuracy,and there is a significant difference among the evaluation methods when the sample size is limited.Accordingly,a performance metric system is established for use in designing and evaluating algorithms,a corrected balanced accuracy is proposed that is adaptable to underwater acoustic needs,and the 5×2 stratified cross-validation evaluation method is recommended.
作者 徐源超 蔡志明 XU Yuanchao;CAI Zhiming(College of Electronic Engineering,Naval University of Engineering,Wuhan 430033,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第10期1559-1565,共7页 Journal of Harbin Engineering University
基金 国家自然科学基金项目(51679247).
关键词 水声目标分类 性能指标 评估方法 分类算法评价 指标体系 样本不平衡 重采样 underwater acoustic target classification performance metrics evaluation method classification algorithm evaluation metric system sample imbalance resampling
  • 相关文献

同被引文献47

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部