期刊文献+

基于马赫曾德尔干涉结构的硅基波分复用器 被引量:1

Silicon wavelength multiplexer based on Mach-Zehnder interferometer
原文传递
导出
摘要 文章提出了一种基于马赫曾德尔干涉结构的硅基波分复用器。该器件可通过集成的电光移相器实现对器件中各通道传输谱的调节﹐来补偿外界温度变换和工艺误差造成的波长漂移。测试结果表明,热光移相器的效率为3 mW/π,可以实现4个通道的波分复用,通道间隔为3.3nm,隔离度大于30 dB。 This paper presents a silicon wavelength multiplexer based on Mach-Zehnder Interferometer.The device can control the transmission spectrum of each channel by the integrated electro-optical phase shifter to compensate the wavelength drift caused by the external temperature conversion and process error.The measurement results show the efficiency of the phase shifter is 3 mW/π and it can realize four wavelength division multiplexing.The channel spacing is 3.3 nm and the isolation is more than 30 dB.
作者 周砚扬 王鹏飞 章宇兵 ZHOU Yan-yang;WANG Peng-fei;ZHANG Yu-bing(China Academy of Electronics and Information Technology,Beijing 100041)
出处 《光电子.激光》 EI CAS CSCD 北大核心 2020年第11期1119-1123,共5页 Journal of Optoelectronics·Laser
基金 国家自然基金青年基金(61904163)资助项目。
关键词 硅基光电子器件 波分复用器 电光移相器 Silicon photonics wavelength multiplexer electro-optical phase shifter
  • 相关文献

参考文献7

  • 1张正嫚,陈鹤鸣.基于硅基波导偏振无关光分束器的研究[J].光电子.激光,2019,30(8):785-790. 被引量:2
  • 2李霞,江晓清,王肖飞.一种基于串联双环谐振器的4×4无阻塞波长选择路由器[J].光电子.激光,2019,30(7):678-682. 被引量:2
  • 3刁兴玲.5G承载光模块成本亟待下降 硅光子前景广阔[J].通信世界,2019,0(4):43-44. 被引量:1
  • 4周砚扬,周林杰,孙晓萌,朱海珂,谢静雅,陈建平.一种基于交趾型PN结的Si基微盘电-光调制器[J].光电子.激光,2014,25(6):1075-1079. 被引量:2
  • 5YIMING ZHONG,LINJIE ZHOU,YANYANG ZHOU,YUJIE XIA,SIQI LIU,LIANGJUN LU,JIANPING CHEN,XINGJUN WANG.Microwave frequency upconversion employing a coupling-modulated ring resonator[J].Photonics Research,2017,5(6):208-213. 被引量:2
  • 6匡杨,胡毅.400Gbit/s光模块的技术浅析[J].光通信研究,2012(1):41-45. 被引量:5
  • 7M.Ablikim,M.N.Achasov,P.Adlarson,S.Ahmed,M.Albrecht,M.Alekseev,A.Amoroso,F.F.An,Q.An,Y.Bai,O.Bakina,R.Baldini Ferroli,Y.Ban,K.Begzsuren,J.V.Bennett,N.Berger,M.Bertani,D.Bettoni,F.Bianchi,J Biernat,J.Bloms,I.Boyko,R.A.Briere,L.Calibbi,H.Cai,X.Cai,A.Calcaterra,G.F.Cao,N.Cao,S.A.Cetin,J.Chai,J.F.Chang,W.L.Chang,J.Charles,G.Chelkov,Chen,G.Chen,H.S.Chen,J.C.Chen,M.L.Chen,S.J.Chen,Y.B.Chen,H.Y.Cheng,W.Cheng,G.Cibinetto,F.Cossio,X.F.Cui,H.L.Dai,J.P.Dai,X.C.Dai,A.Dbeyssi,D.Dedovich,Z.Y.Deng,A.Denig,Denysenko,M.Destefanis,S.Descotes-Genon,F.De Mori,Y.Ding,C.Dong,J.Dong,L.Y.Dong,M.Y.Dong,Z.L.Dou,S.X.Du,S.I.Eidelman,J.Z.Fan,J.Fang,S.S.Fang,Y.Fang,R.Farinelli,L.Fava,F.Feldbauer,G.Felici,C.Q.Feng,M.Fritsch,C.D.Fu,Y.Fu,Q.Gao,X.L.Gao,Y.Gao,Y.Gao,Y.G.Gao,Z.Gao,B.Garillon,I.Garzia,E.M.Gersabeck,A.Gilman,K.Goetzen,L.Gong,W.X.Gong,W.Gradl,M.Greco,L.M.Gu,M.H.Gu,Y.T.Gu,A.Q.Guo,F.K.Guo,L.B.Guo,R.P.Guo,Y.P.Guo,A.Guskov,S.Han,X.Q.Hao,F.A.Harris,K.L.He,F.H.Heinsius,T.Held,Y.K.Heng,Y.R.Hou,Z.L.Hou,H.M.Hu,J.F.Hu,T.Hu,Y.Hu,G.S.Huang,J.S.Huang,X.T.Huang,X.Z.Huang,Z.L.Huang,N.Huesken,T.Hussain,W.Ikegami Andersson,W.Imoehl,M.Irshad,Q.Ji,Q.P.Ji,X.B.Ji,X.L.Ji,H.L.Jiang,X.S.Jiang,X.Y.Jiang,J.B.Jiao,Z.Jiao,D.P.Jin,S.Jin,Y.Jin,T.Johansson,N.Kalantar-Nayestanaki,X.S.Kang,R.Kappert,M.Kavatsyuk,B.C.Ke,I.K.Keshk,T.Khan,A.Khoukaz,P.Kiese,R.Kiuchi,R.Kliemt,L.Koch,O.B.Kolcu,B.Kopf,M.Kuemmel,M.Kuessner,A.Kupsc,M.Kurth,M.G.Kurth,W.Kuhn,J.S.Lange,P.Larin,L.Lavezzi,H.Leithoff,T.Lenz,C.Li,Cheng Li,D.M.Li,F.Li,F.Y.Li,G.Li,H.B.Li,H.J.Li,J.C.Li,J.W.Li,Ke Li,L.K.Li,Lei Li,P.L.Li,P.R.Li,Q.Y.Li,W.D.Li,W.G.Li,X.H.Li,X.L.Li,X.N.Li,X.Q.Li,Z.B.Li,H.Liang,H.Liang,Y.F.Liang,Y.T.Liang,G.R.Liao,L.Z.Liao,J.Libby,C.X.Lin,D.X.Lin,Y.J.Lin,B.Liu,B.J.Liu,C.X.Liu,D.Liu,D.Y.Liu,F.H.Liu,Fang Liu,Feng Liu,H.B.Liu,H.M.Liu,Huanhuan Liu,Huihui Liu,J.B.Liu,J.Y.Liu,K.Y.Liu,Ke Liu,Q.Liu,S.B.Liu,T.Liu,X.Liu,X.Y.Liu,Y.B.Liu,Z.A.Liu,Zhiqing Liu,Y.F.Long,X.C.Lou,H.J.Lu,J.D.Lu,J.G.Lu,Y.Lu,Y.P.Lu,C.L.Luo,M.X.Luo,P.W.Luo,T.Luo,X.L.Luo,S.Lusso,X.R.Lyu,F.C.Ma,H.L.Ma,L.L.Ma,M.M.Ma,Q.M.Ma,X.N.Ma,X.X.Ma,X.Y.Ma,Y.M.Ma,F.E.Maas,M.Maggiora,S.Maldaner,S.Malde,Q.A.Malik,A.Mangoni,Y.J.Mao,Z.P.Mao,S.Marcello,Z.X.Meng,J.G.Messchendorp,G.Mezzadri,J.Min,T.J.Min,R.E.Mitchell,X.H.Mo,Y.J.Mo,C.Morales Morales,N.Yu.Muchnoi,H.Muramatsu,A.Mustafa,S.Nakhoul,Y.Nefedov,F.Nerling,I.B.Nikolaev,Z.Ning,S.Nisar,S.L.Niu,S.L.Olsen,Q.Ouyang,S.Pacetti,Y.Pan,M.Papenbrock,P.Patteri,M.Pelizaeus,H.P.Peng,K.Peters,A.A.Petrov,J.Pettersson,J.L.Ping,R.G.Ping,A.Pitka,R.Poling,V.Prasad,M.Qi,T.Y.Qi,S.Qian,C.F.Qiao,N.Qin,X.P.Qin,X.S.Qin,Z.H.Qin,J.F.Qiu,S.Q.Qu,K.H.Rashid,C.F.Redmer,M.Richter,M.Ripka,A.Rivetti,V.Rodin,M.Rolo,G.Rong,J.L.Rosner,Ch.Rosner,M.Rump,A.Sarantsev,M.Savrie,K.Schoenning,W.Shan,X.Y.Shan,M.Shao,C.P.Shen,P.X.Shen,X.Y.Shen,H.Y.Sheng,X.Shi,X.D Shi,J.J.Song,Q.Q.Song,X.Y.Song,S.Sosio,C.Sowa,S.Spataro,F.F.Sui,G.X.Sun,J.F.Sun,L.Sun,S.S.Sun,X.H.Sun,Y.J.Sun,Y.K Sun,Y.Z.Sun,Z.J.Sun,Z.T.Sun,Y.T Tan,C.J.Tang,G.Y.Tang,X.Tang,V.Thoren,B.Tsednee,I.Uman,B.Wang,B.L.Wang,C.W.Wang,D.Y.Wang,H.H.Wang,K.Wang,L.L.Wang,L.S.Wang,M.Wang,M.Z.Wang,Wang Meng,P.L.Wang,R.M.Wang,W.P.Wang,X.Wang,X.F.Wang,X.L.Wang,Y.Wang,Y.F.Wang,Z.Wang,Z.G.Wang,Z.Y.Wang,Zongyuan Wang,T.Weber,D.H.Wei,P.Weidenkaff,H.W.Wen,S.P.Wen,U.Wiedner,G.Wilkinson,M.Wolke,L.H.Wu,L.J.Wu,Z.Wu,L.Xia,Y.Xia,S.Y.Xiao,Y.J.Xiao,Z.J.Xiao,Y.G.Xie,Y.H.Xie,T.Y.Xing,X.A.Xiong,Q.L.Xiu,G.F.Xu,L.Xu,Q.J.Xu,W.Xu,X.P.Xu,F.Yan,L.Yan,W.B.Yan,W.C.Yan,Y.H.Yan,H.J.Yang,H.X.Yang,L.Yang,R.X.Yang,S.L.Yang,Y.H.Yang,Y.X.Yang,Yifan Yang,Z.Q.Yang,M.Ye,M.H.Ye,J.H.Yin,Z.Y.You,B.X.Yu,C.X.Yu,J.S.Yu,C.Z.Yuan,X.Q.Yuan,Y.Yuan,A.Yuncu,A.A.Zafar,Y.Zeng,B.X.Zhang,B.Y.Zhang,C.C.Zhang,D.H.Zhang,H.H.Zhang,H.Y.Zhang,J.Zhang,J.L.Zhang,J.Q.Zhang,J.W.Zhang,J.Y.Zhang,J.Z.Zhang,K.Zhang,L.Zhang,S.F.Zhang,T.J.Zhang,X.Y.Zhang,Y.Zhang,Y.H.Zhang,Y.T.Zhang,Yang Zhang,Yao Zhang,Yi Zhang,Yu Zhang,Z.H.Zhang,Z.P.Zhang,Z.Q.Zhang,Z.Y.Zhang,G.Zhao,J.W.Zhao,J.Y.Zhao,J.Z.Zhao,Lei Zhao,Ling Zhao,M.G.Zhao,Q.Zhao,S.J.Zhao,T.C.Zhao,Y.B.Zhao,Z.G.Zhao,A.Zhemchugov,B.Zheng,J.P.Zheng,Y.Zheng,Y.H.Zheng,B.Zhong,L.Zhou,L.P.Zhou,Q.Zhou,X.Zhou,X.K.Zhou,Xingyu Zhou,Xiaoyu Zhou,Xu Zhou,A.N.Zhu,J.Zhu,J.Zhu,K.Zhu,K.J.Zhu,S.H.Zhu,W.J.Zhu,X.L.Zhu,Y.C.Zhu,Y.S.Zhu,Z.A.Zhu,J.Zhuang,B.S.Zou,J.H.Zou,无.Future Physics Programme of BESⅢ[J].Chinese Physics C,2020,44(4). 被引量:539

二级参考文献29

  • 1Ambrosia J D. 100 Gigabit ethernet and beyond [J] . IEEE Commun Mag,2010,48(3) :6-13.
  • 2Cole Chris. Technology Alternatives for 400GbE and Beyond Optical Interfaces [A] . Workshop on Beyond 100GbE [C]. Santa Clara,CA USA: Ethernet summit, 2011.2-18.
  • 3Takeshi Fujisawa. 1. 3 μm, 5 0 Gbit / s EADFB Lasers for 400GbE[A] . Proc OFC 2011[C]. Los Angeles, USA: OSA, 2011. OWD4.
  • 4Heismann Fred . New Technology Trends in DWDM Transmission Beyond 100 Gb/s [R] . McCarthy, CA USA:JDSU,2010.
  • 5Winzer P J. Beyond 100G ethernet [J]. IEEE Com- mun Mag, 2010,48(7) :26-30.
  • 6Sano A. No-Guard-Interval Coherent Optical OFDM for 100Gb/s Long-Haul WDM Transmission [J]. J Lightwave Tech, 2010,27(16) :3705-3713.
  • 7Chandrasekhar S , Liu Xiang . Enabling Components for Future High-Speed Coherent Communication Sys- tems [A]. Proe OFC 2011 [C]. Los Angeles, USA: 0SA,2011. OMUS.
  • 8Reed G T, Mashanovich G,Gardes F Y,et al. Silicon opti- cal modulators[J]. Nat. Photonics, 20]0,4(8) : 518-526.
  • 9Orcutt J S, Moss B, Sun C, et al. Open foundry platform for high-performance electronic-photonic integration[J]. Opt. Express, 2012,20 : 12222.
  • 10Shainline J M, Orcutt J S, Wade M T, et al. Depletion- mode carrier-plasma optical modulator in zero-change advanced CMOS[J]. Optics Letters,2013,38(15) :2657.

共引文献546

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部