期刊文献+

基于产品使用率的柔性基本质保策略优化设计 被引量:4

Optimal Design for Flexible Basic Warranty Policies Based on Usage Rate of Products
下载PDF
导出
摘要 以制造商质保成本最小化为目标,考虑使用时间和使用量相关性对产品故障率的影响,利用Copula函数建立二维基本质保优化模型.在质保期内采用最小维修和非等强度周期预防性维修,优化基本质保期内产品的维修策略.通过分析基本质保期和价格对产品销量的影响,建立产品利润模型.考虑制造商提供标准质保和柔性质保等两种基本质保策略,分别优化基本质保期的长度和价格.案例研究表明:质保成本最小化并不能保证制造商获得最大利润;而增加质保策略的柔性,可以帮助制造商提升顾客满意度、获取更高的利润. To minimize the warranty cost of manufacturers,a two-dimensional basic warranty optimization model is established based on Copula function.The influence of usage time and usage rate on product failure rate is considered.Moreover,minimal repair and non-equal-strength periodic preventive maintenances are adopted,and the maintenance policies during the warranty period are optimized.By considering the influence of basic warranty period and sale price on product sales,a profit model is established.Considering that manufacturers provide two types of warranty policies,i.e.normative warranty policy and flexible warranty policy,for customers,the basic warranty period and its prices are optimized respectively.The result shows that minimizing warranty cost cannot ensure the maximization of manufacturers’benefits.However,by increasing the flexibility of warranty policy,customer satisfaction can be promoted,which helps to gain more profits for manufacturers.
作者 苏春 赵家彬 SU Chun;ZHAO Jiabin(School of Mechanical Engineering,Southeast University,Nanjing 211189,China)
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2020年第11期1182-1188,共7页 Journal of Shanghai Jiaotong University
基金 江苏风力发电工程技术中心开放基金(ZK19-03-03) 国家自然科学基金(71671035)资助项目。
关键词 柔性基本质保 COPULA函数 质保成本 预防性维修 使用率 flexible basic warranty Copula function warranty cost preventive maintenance usage rate
  • 相关文献

参考文献1

二级参考文献14

  • 1YAK Y W, DILLON T S, FORWARD K E. Modelling the effect of transient faults in fault-tolerant computer systems [J]. Computer Systems Science and Engineering, 1987, 2(4): 161-166.
  • 2GRAHAM R L, LAWLER E L, LENSTRA J K, et al. Optimization and approximation in deterministic sequencing and scheduling: A survey [J]. Annals of Operations Research, 1979, 5: 287-326.
  • 3BOLAND P J, PROSCHAN F. Periodic replacement with increasing minimal repair costs at failure [J]. Operations Research, 1982, 30: 1183-1189.
  • 4MALIK M A K. Reliable preventive maintenance scheduling [J]. AIIE Transaction, 1979, 11(2): 221- 228.
  • 5LIE C H, CHUN Y H. An algorithm for preventive maintenance policy [J]. IEEE Transactions on Reliability, 1986, 35(1): 71-75.
  • 6JAYABALAN V, CHAUDHURI D. Optimal maintenancereplacement policy under imperfect maintenance [J]. Reliability Engineering and System Safety, 1992, 36(2): 165-169.
  • 7MARTORELL S, SANCHEZ A, SERRADELL V. Agedependent reliability model considering effects of maintenance and working conditions [J]. Reliability Engineering and System Safety, 1999, 64: 19-31.
  • 8TSAI Y T, WANG K S, TENG H Y. Optimizing preventive maintenance for mechanical components using genetic algorithms [J]. Reliability Engineering and System Safety, 2001, 74: 89-97.
  • 9SURESH P V, CHAUDHURI D. Preventive maintenance scheduling for a system with assured reliability using fuzzy set theory [J]. International Journal of Reliability, 1994, 30(4): 407-513.
  • 10LIM J H, PARK D H. Optimal periodic preventive maintenance schedules with improvement factors depending on number of preventive maintenances [J]. Asia-Pacific Journal of Operational Research, 2007, 24(1): 111-124.

共引文献3

同被引文献26

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部