期刊文献+

基于迭代p阈值投影算法的压缩感知磁共振成像 被引量:4

Compressed Sensing Magnetic Resonance Imaging Based on Projected Iterative p‑Thresholding Algorithm
下载PDF
导出
摘要 针对迭代软阈值投影算法中的软阈值函数收缩功能较差的问题,提出了迭代p阈值投影算法。用p阈值函数替换迭代软阈值投影算法中的软阈值函数,对小系数的惩罚更大,对大系数产生更小的偏置,以抑制噪声,减少重建误差。为加快算法速度,利用Nesterov梯度加速技术,设计了快速迭代p阈值投影算法,用于磁共振图像重建。在紧标架为平移不变离散小波变换和轮廓波下,将快速迭代p阈值投影算法用于压缩感知磁共振成像。与光滑化的快速迭代软阈值算法、迭代软阈值投影算法和交替方向乘子法进行仿真对比分析的结果表明,快速迭代p阈值投影算法提高了磁共振成像的重建速度和重建质量。分析了p值对算法性能的影响,给出了适合的p值选择方法,以获得较好的收敛速度、减小重构误差。 Aiming at the problem of poor shrinkage of the soft thresholding function in the projected iterative soft thresholding algorithm,a projected iterative p-thresholding algorithm is proposed.It replaces the soft thresholding function in the projected iterative soft thresholding algorithm with p-thresholding function,which will bring greater penalty for small coefficients and produce smaller bias for large coefficients to suppress the noise and reduce reconstruction errors.To speed up the algorithm,using the Nesterov gradient acceleration technology,a projected fast iterative p-thresholding algorithm is designed for magnetic resonance image reconstruction.When the tight frames are shift-invariant discrete wavelet transform and Contourlets,the projected fast iterative p-thresholding algorithm is used for compressed sensing magnetic resonance imaging.Compared with the smoothed fast iterative soft thresholding algorithm,projected iterative soft thresholding algorithm and alternating direction multiplier method,simulation results show that the projected fast iterative p-thresholding algorithm promotes the reconstruction speed and the reconstruction quality of magnetic resonance imaging.And the influence of the p value on the performance of the algorithm is analyzed,and a suitable p value selection method is given to obtain a better convergence speed and reduce the reconstruction error.
作者 杜秀丽 刘晋廷 吕亚娜 邱少明 DU Xiuli;LIU Jinting;LYU Yana;QIU Shaoming(Communication and Network Laboratory,Dalian University,Dalian,116622,China;College of Information Engineering,Dalian University,Dalian,116622,China)
出处 《数据采集与处理》 CSCD 北大核心 2020年第6期1060-1068,共9页 Journal of Data Acquisition and Processing
基金 辽宁百千万人才工程(2018921080)资助项目。
关键词 磁共振图像 迭代软阈值投影算法 紧标架 软阈值 p阈值 magnetic resonance imaging projected iterative soft thresholding algorithm tight frames soft thresholding p-thresholding
  • 相关文献

参考文献4

二级参考文献146

  • 1WANG Ke-qi BAI Xue-bing.Classification of wood surface texture based on Gauss-MRF Model[J].Journal of Forestry Research,2006,17(1):57-61. 被引量:4
  • 2刘华军,任明武,杨静宇.一种改进的基于模糊聚类的图像分割方法[J].中国图象图形学报,2006,11(9):1312-1316. 被引量:23
  • 3Huseyin T, Kimia B. Volumetric segmentation of medical images by three dimensional bubbles [J]. Computer Vision and Image Understanding, 1997, 65(2): 246-258.
  • 4Chakraborty A, Staib H, Duncan S. Deformable boundary finding in medical images by integrating gradient and region infor- mation [J]. IEEE Transactions on Medical Image, 1996, 15(6) : 859-870.
  • 5Johnston B, Atkins M, Mackiewich B. Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI [J]. IEEE Transactions on Medical Image, 1996, 15(2) 154-169.
  • 6Mackiewich B. Intracranial boundary diction and radio frequency correction in magnetic resonance images [D]. Burnaby, B. C, Canada: Simon Fraster Univ. , 1995.
  • 7Rogowska J. Handbook of medical imaging processing and analysis[M]. New York:Academic Press, 2000: 69-86.
  • 8Ginneken B, Alejandro F F, Joes J. Active shape model segmentation with optimal features [J]. IEEE Transactions on Med- ical Imaging, 2002, 21(8): 924-933.
  • 9Pham L, Xu C Y, Prince I: A survey of current methods in medical image segmentation [J]. Annual Review of Biomedical Engineering, 2000,2: 315-317.
  • 10Paragios N, Deriche R. Geodesic active regions and level set methods for supervised texture segmentation [J]. International Journal of Computer Vision, 2002, 46(3): 223-247.

共引文献27

同被引文献28

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部