期刊文献+

基于响应面法的铝制发罩的冲压工艺参数优化 被引量:8

Optimization on stamping process parameters for aluminum hood based on response surface method
原文传递
导出
摘要 以车身覆盖件铝制发动机罩为研究对象,阐述了如何采用基于Autoform分析软件和成形性评价函数的成形工艺优化方法对零件的成形工艺参数进行优化。铝合金板的成形性能相对钢板而言,其局部冲压成形性能较差,容易产生裂纹,并且铝合金回弹较大且难以控制,板材的尺寸精度不易掌握。通过建立响应面模型,分析铝制发罩的冲压工艺参数,并使用遗传算法进行多目标优化参数求解,得出最优的工艺参数组合为:拉延筋阻力系数X1=0.95,X2=0.38,X3=0.48,X4=0.48,压边力X5=556 k N。实际结果显示,采用最优的工艺参数组合,该铝制发罩的最大减薄率和最大回弹量得到了有效控制,缩短了零件的调试周期、降低了企业的开发成本。 For aluminum hood of car body cover,it was expounded how to optimize the forming process parameters of parts by the forming process optimization method based on analysis software Autoform and formability evaluation function.Compared with the forming performance of steel plate,the local stamping performance of aluminum alloy plate is poor which is prone to crack.Meanwhile,the aluminum alloy sprinkback is larger and difficult to control,and the dimensional accuracy of plate is not easy to guarantee.The stamping process parameters of aluminum hood were analyzed by establishing response surface model.Then,the multi-objective optimization parameters were solved by genetic algorithm,and the optimal process parameter combination was obtained with the drawbead resistance coefficients of X1=0.95,X2=0.38,X3=0.48,X4=0.48,and the blank holder force of X5=556 k N.The actual results show that the maximum thinning rate and the maximum springback amount of aluminum hood are effectively controlled to shorten the debugging period of parts and reduce the development cost of enterprise.
作者 谈顺强 向荣 Tan Shunqiang;Xiang Rong(Chang’an Ford Automobile Co.,Ltd.,Chongqing 401122,China;School of Mechatronics Engineering,Guizhou Minzu University,Guiyang 550025,China)
出处 《锻压技术》 CAS CSCD 北大核心 2020年第11期73-81,共9页 Forging & Stamping Technology
关键词 铝制发动机罩 成形性能 响应面模型 遗传算法 减薄率 回弹量 aluminum hood formability response surface model genetic algorithm thinning rate springback
  • 相关文献

参考文献6

二级参考文献29

共引文献32

同被引文献72

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部